

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline and monitoring methodology</u>
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

CIGAR	Covered In-Ground Anaerobic Reactor
COD	Chemical Oxygen Demand
GHG	Greenhouse gas
IRR	Internal rate of return
SQS	Siam Quality Starch Co., Ltd.

page 3

SECTION A. General description of project activity

A.1 Title of the project activity:

Siam Quality Starch Wastewater Treatment and Energy Generation Project in Chaiyaphum, Thailand (the Project)

Version 1.0 31/08/2007

A.2. Description of the <u>project activity</u>:

Siam Quality Starch Co., Ltd. (SQS) manufactures Native and Modified Starch, extracted and refined from tapioca root, at its starch factory in Chaiyaphum Province, in the North Eastern region of Thailand. The production of starch, totalling about 200,000 tonnes annually, produces a large amount of high organic content wastewater, which emits methane when treated in anaerobic open lagoons prior to land application in eucalyptus plantations that surround the lagoons, on-site.

The Project, to be carried out by SQS at its starch factory, is the installation and operation of an anaerobic digestion and methane recovery system for the treatment of wastewater coupled with an energy generation system. In the absence of the Project, the wastewater will be treated in a series of anaerobic open lagoons, emitting methane during the long decomposition process. The captured methane will be destructed in boilers totalling 17.068MW_{th} for the production of hot thermal oil for use in heating air in process dryers.

The Project will therefore be responsible for two types of emission reductions. The first is the avoidance of methane, a potent greenhouse gas (GHG), that would be emitted from the baseline open lagoons, through its capture and destruction. The second is the displacement of bunker oil by the Project's carbon neutral energy, which will result in the reduction of carbon dioxide emissions from the combustion of bunker oil. The project activity is expected to reduce GHGs by an average of about 100,000 tonnes annually.

The Project contributes to sustainable development of Thailand in the following ways:

- Improvement of local air quality. Apart from the reduction in GHGs, the Project will improve the environmental performance of SQS's starch factory by reducing the COD load of effluent entering the open lagoons. Organic effluent treated in open lagoons not only emits a large amount of methane, a flammable gas, but also produces a strong pungent stench. By using the captured methane for energy generation and reducing fossil fuel consumption, the Project will also reduce emissions associated with the burning of fossil fuels.
- Reduction in reliance of fossil fuels. The project activity will displace internal bunker oil consumption. While the Project's fossil fuel consumption is small as compared to power plants, it is nevertheless significant in that the replication of such projects nation-wide will amount to a large reduction in the long term.

A.3. <u>Project participants</u>:

UNFCCC

page 4

rable 1: rable of project participants						
Name of Party involved	Private and/or public entity (ies)	Kindly indicate if the Party				
	project participants	involved wishes to be considered				
		as project participant				
		(Yes/No)				
Thailand (host)	Siam Quality Starch Co., Ltd.	No				
Japan	Mitsubishi UFJ Securities Co., Ltd.	No				

Table 1: Table of project participants

Siam Quality Starch Co., Ltd. (SQS)

SQS is a Thai-based producer of starch since 1995 and is a major producer of tapioca starches in the Asia Pacific, with its products distributed both locally and internationally to destinations including USA, Japan, Europe, Australia and New Zealand. SQS specializes in producing premium quality, food-grade native and modified tapioca starches.

SQS is implementing the project activity.

Mitsubishi UFJ Securities Co., Ltd. (MUS)

Through its Clean Energy Finance Committee, MUS provides consulting services to promote Clean Development Mechanism (CDM) and Joint Implementation (JI) projects. MUS is the CDM advisor to the Project and the contact for the project activity.

A.4.	Technical description of the project activity:				
		•			
	A.4.1. Location of the <u>project activity</u> :				
	A.4.1.1.	Host Party(ies):			

Thailand

A.4.1.2. Region/State/Province etc.:

Chaiyaphum Province

A.4.1.3. City/Town/Community etc:

Village 10, Tambol Khokrerngrom, Ampher Bumnetnarong

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

Chaiyaphum Province is approximately 340 km kilometres north-east of Bangkok and has an area of 12,778 km², sharing borders with the Khon Kaen, Nakhon Ratchasima, Lopburi and Phetchabun Provinces. The major industry is agriculture, with principal crops including rice, tapioca, sugar cane and some maize.

page 5

The factory is located on Route 205 in the South Eastern corner of Chaiyaphum Province, about 10 km West of the nearest township of Kham Ping. The area is completely agricultural, with rice grown in low-lying areas and tapioca or sugar cane grown on higher, dryer ground. Kham Ping consists mainly of a cluster of businesses around an intersection existing to serve the agricultural community plus the Ampher Bumnetnarong Hospital.

Figure 1: Map of Thailand with Chaiyaphum Province highlighted (Courtesy of Wikipedia)

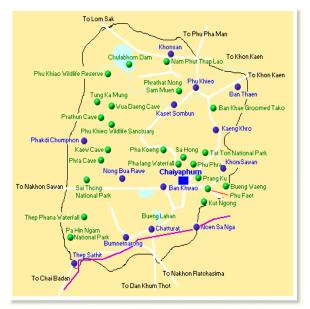


Figure 2: Map of Chaiyaphum Province (Courtesy of sawadee.com)

A.4.2. Category(ies) of project activity:

page 6

The Project fits under the following two categories of project activity:

- Sectoral Scope 1 Energy industries (renewable / non-renewable sources)
- Sectoral Scope 13 Waste handling and disposal

A.4.3. Technology to be employed by the project activity:

Wastewater treatment system:

Under the project activity, the wastewater will be treated with a Covered In-Ground Anaerobic Reactor (CIGAR) with a useable volume of 90,000 m³. In the digester, the organic compounds in the wastewater are broken down with the help of anaerobic bacteria, which thrive in the absence of oxygen. The digester is lined with high density polyethylene (HDPE) to prevent both the biogas and wastewater from leaking.

The wastewater is treated in the anaerobic digester for 10 to 15 days, reducing the Chemical Oxygen Demand (COD) load by approximately 80%, and the biogas recovered, before the wastewater is discharged for further treatment in the existing open lagoons.

After lagoon treatment, the final effluent is pumped via underground piping to the surrounding eucalyptus plantation, which covers approximately half of the 120+ hectares of the SQS premises. The method of final discharge remains the same before and after the project activity.

A relatively small amount of sludge is removed infrequently from the existing open lagoons. When sludge is removed, it is given to local farmers for application on tapioca fields as fertilizer.

Energy generation system:

The boilers in the starch plant were originally four thermal oil heaters with a 2 x 3,300kW and 2 x 5,234kW configuration, designed to burn fuel oil. Under the Project, the 2 x 5,234kW burners are retrofitted with "RAY" dual fuel burners such that the boilers can be co-fired using the biogas collected in the CIGAR system. The 2 x 3,300kW burners are completely replaced by new 2 x 5,234kW burners, both in order to allow dual fuel injection and to cater for biogas, which has a low heat content by volume.

Excess biogas flare:

The biogas flare is designed to ignite on overpressure of the biogas supply to the boilers, although it can be operated with a nominal flow to enable a constant flare and reduce the risk of ignition failure. While it has the capacity to handle up to 50% of the biogas flow, under normal operation the flare is not utilized.

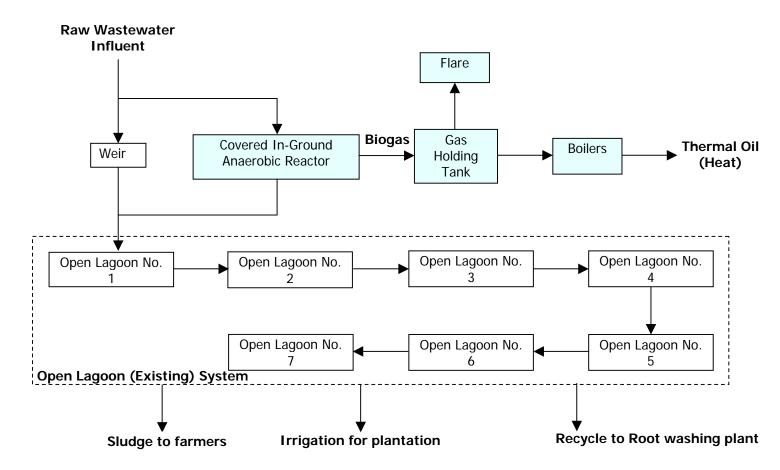


Figure 3: Simple process diagram of Project's wastewater treatment and energy generation systems (additions due to project activity coloured)

A.4.4 Estimated amount of emission reductions over the chosen <u>crediting period</u>:

The estimated amount of emission reductions over the crediting period is shown below.

Estimation of annual emission reductions
in tonnes of CO_2e
99,443
99,443
99,443
99,443
99,443
99,443
99,443
99,443
99,443
99,443

Table 2: Ex ante estimation of emission reductions

page 8

Total estimated reductions (tonnes of CO ₂ e)	994,430
Total number of crediting years	10
Annual average of the estimated reductions over the	99,443
crediting period (tCO ₂ e)	

A.4.5. Public funding of the project activity:

The Project does not involve funding from an Annex I country.

page 9

SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the <u>project activity</u>:

The following two approved baseline and monitoring methodologies are applied.

- AM0013: "Avoided methane emissions from organic waste-water treatment" Version 04, valid from 22 December 2006
- AMS-I.C. "Thermal energy for the user" Version 12, valid from 10 August 2007

For the purpose of establishing additionality, Version 03 of the *Tool for the demonstration and assessment of additionality* ("Additionality Tool") is also used.

B.2 Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity:</u>

The Project meets all the applicability conditions of the methodologies, as described below.

Table 3: Applicability conditions for AM0013

Ius	Applicability condition	Project case		
1	 The existing waste water treatment system is an open lagoon system with an 'active' anaerobic condition, which is characterized as follows: The depth of the open lagoon system is at least 1m; The temperature of the anaerobic lagoons is higher than 10°C. If the average monthly temperature in a particular month is less than 10°C, this month is not included in the estimations, as it is assumed that no anaerobic activity occurs below such temperature. The residence time of the organic matter should be at least 30 days. 	 at least 1m; The temperature of the anaerobic lagoons is higher than 10°C. The mean temperatures in Chaiyaphum range from 24°C to 30°C¹. The residence time of the organic matter in open lagoons is approximately 40 to 45 		
2	Sludge produced during project activity is not stored onsite before land application to avoid any possible methane emissions from anaerobic degradation.	Sludge, which is removed infrequently, is not stored onsite. They are given away to nearby farmers.		

Table 4: Applicability conditions for AMS-I.C.

Applicability condition	Project case

¹weather.com, accessed March 2007.

page 10

1	This category comprises renewable energy	The project activity involves the supply to users
	technologies that supply individual households	of thermal energy derived from renewable
	or users with thermal energy that displaces fossil	biogas that displaces fossil fuels, namely, fuel
	fuels. Examples include solar thermal water	oil.
	heaters and dryers, solar cookers, energy derived	
	from renewable biomass for water heating, space	
	heating, or drying, and other technologies that	
	provide thermal energy that displaces fossil fuel.	
	Biomass-based cogenerating systems that	
	produce heat and electricity for use on-site are	
	included in this category.	
2	Where generation capacity is specified by the	See 3. below.
	manufacturer, it shall be less than 15MW.	
3	For co-generation systems and/or co-fired	The capacity of the boilers total 17.068MW _{th} and
	systems to qualify under this category, the	will be co-fired with fuel oil.
	energy output shall not exceed 45 MW _{thermal} e.g.	
	for a biomass based co-generating system the	
	capacity for all the boilers affected by the project	
	activity combined shall not exceed 45 MW _{thermal} .	
	In the case of the co-fired system the installed	
	capacity (specified for fossil fuel use) for each	
	boiler affected by the project activity combined	
	shall not exceed 45 MW _{thermal} .	
4	In the case of project activities that involve the	Not applicable. The project activity does not
	addition of renewable energy units at an existing	involve the addition of renewable energy units at
	renewable energy facility, the added capacity of	an existing renewable energy facility.
	the units added by the project should be lower	
	than 45 MW _{thermal} and should be physically	
	distinct from the existing units.	

B.3. Description of the sources and gases included in the project boundary

As per the methodology, the project boundary includes the existing waste water treatment plant, where sludge is degraded in open sludge lagoons under mainly anaerobic conditions. The following emission sources are included:

Source		Gas	Included/Excluded	Justification / Explanation
	Direct emissions from the	CH_4	Included	The major source of emissions in the
waste treatment processes				baseline
-		N_2O	Excluded	Excluded for simplification. This is
ine				conservative.
Baseline		CO_2	Excluded	CO_2 emissions from the
\mathbf{Ba}				decomposition of organic waste are
				not accounted
	Emissions from electricity	CO_2	Excluded	Not applicable to the Project.
	consumption / generation	CH ₄	Excluded	

Table 5: Sources and gases in the project boundary

page 11

<u> </u>		N ₂ O	Excluded	
	Emissions from thermal	CO ₂	Included	Thermal energy generation is
	energy generation			included in the project activity
		CH_4	Excluded	Excluded for simplification. This is
				conservative.
		N ₂ O	Excluded	Excluded for simplification. This is conservative.
	On-site fossil fuel	CO ₂	Included	May be an important emission source
	consumption due to the project activity	CH ₄	Excluded	Excluded for simplification. This emission source is assumed to be very
				small.
		N ₂ O	Excluded	Excluded for simplification. This emission source is assumed to be very small.
activity	Emissions from on-site electricity use in the digester auxiliary equipment	CO ₂	Included	May be an important emission source. If electricity is generated from collected biogas, these emissions are not accounted for.
		CH ₄	Excluded	Excluded for simplification. This emission source is assumed to be very small.
Project activity		N ₂ O	Excluded	Excluded for simplification. This emission source is assumed to be very small.
	Direct emissions from the waste treatment processes	N ₂ O	Excluded	Excluded for simplification. Not an important emission source.
		CO ₂	Excluded	CO ₂ emissions from the decomposition of organic waste are not accounted.
		CH ₄	Included	The emission from uncombusted methane and also leakage in case of anaerobic digesters. In case of dewatering and land application, conservative estimates of methane are included.

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

The most plausible baseline scenario is identified in the following steps:

- Step I. Identification of all plausible alternatives to the Project;
- Step II. Narrowing down of the alternatives through barrier assessment.
- Step III. Confirmation by applying the latest version of the "Tool for demonstration and assessment of additionality"

page 12

Step I. Identification of all plausible alternatives to the Project

The alternative scenarios available to SQS and that provide comparable outputs to the Project are summarized in the table below.

Alternative	Wastewater treatment	Biogas usage	Description of alternative scenario
A	Sequential treatment using CIGAR system and existing open lagoon	Used to produce process heating	The Project undertaken without being registered as a CDM project activity
В	Sequential treatment using CIGAR system and existing open lagoon	Not utilized	The wastewater treatment method is the same as the Project, but does not include biogas utilization and hence smaller capital cost
С	Sequential treatment using anaerobic/aerobic system other than CIGAR and existing open lagoon	Used to produce process heating or not utilized (in the case of aerobic system)	This alternative involves an upgrade to a wastewater treatment system with comparable results to the Project
D	Open lagoons	Uncontrolled release into the atmosphere	This is the continuation of current practice
E	Open lagoons in short- to medium-term, upgrade to sequential treatment using CIGAR system and existing open lagoon in future	Uncontrolled release into the atmosphere in short- to medium-term, used to produce process heating in future	This is the continuation of current practice, with the Project undertaken without being registered as a CDM project activity in the future

Table 6: List of plausible alternatives to the Project

Step II. Narrowing down of the alternatives through barrier assessment

Of the five alternatives identified in Step I above, all but Alternative D, the continuation of current practice, can be immediately ruled out as plausible alternatives, as delineated below.

Alternative A: As further discussed in Section B.5 below, this alternative involves high risk and upfront capital cost that is not acceptable to SQS in the absence of the CDM.

Alternative B: This is a less advantageous option as compared to Alternative A. While the upfront cost is lower, not only does this alternative involve the same high risks, but there is no cost recovery in the form of reduced fossil fuel consumption.

Alternative C: This is also a less advantageous option as compared to Alternative B. While this alternative provides a comparable output, the CIGAR system utilized in Alternative A is one of the less cost intensive options available for the treatment of wastewater. A more technologically advanced system may provide greater process stability and potentially higher biogas yield, however, the cost was considered too high by SQS to warrant the risky investment.

page 13

Alternative D: This is the continuation of current practice. SQS' original plan prior to the decision to proceed with the CDM project activity was to continue treatment of its wastewater in the existing lagoons, and to increase the capacity of the open lagoons either by increasing the number of ponds or increasing the volume of each pond as necessary to cater for any increase in starch production capacity.

Alternative E: This alternative involves the implementation of the Project without the assistance of the CDM not immediately but in the future. For the same reasons outlined for Alternative A, this alternative was not acceptable to SQS. In addition, as briefly discussed in Alternative D, the project circumstances will remain the same in the future, as the SQS starch factory has an abundance of land such that any increase in production capacity or tightening of discharge limits can be catered for by simply increasing the capacity of the open lagoons.

Therefore, the most plausible baseline scenario is Alternative D, the continuation of current practice. This conclusion will be reinforced in the assessment of additionality in the ensuing section.

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality):

The Project's additionality is demonstrated by applying the latest version of the "Tool for the demonstration and assessment of additionality" (Version 03), which is consistent with Option B of the methodology.

Step 1. Identification of alternatives to the project activity consistent with current laws and regulations

Realistic and credible alternatives to the project activity is identified in this step through the following sub-steps.

Sub-step 1a. Define alternatives to the project activity

See Section B.4. The most plausible baseline scenario is the continuation of current practice.

Sub-step 1b. Consistency with mandatory laws and regulations

All alternatives identified are consistent with mandatory laws and regulations.

Step 2. Investment analysis

The IRR is chosen as the most suitable indicator. As per the Tool, the equity IRR will be used as there is only one possible developer.

Sub-step 2a – Determine the appropriate analysis method

As the CDM project activity generates financial benefits in the form of reduced consumption of fuel oil, the simple cost analysis is not appropriate. Of the remaining investment comparison analysis and benchmark analysis, the benchmark analysis is chosen.

page 14

Sub-step 2b – Option III. Apply benchmark analysis

At the time the Project was being considered by SQS in 2003, the internal benchmark IRR used was 20%, taking into account SQS internal policies and factors such as risk to factory operation. If retrospectively, one applies the benchmark analysis, a premium would have been added to the government bond rate of a little above 4% at the time, to reflect risks to private sector investment and the significant risk inherent to using an unfamiliar technology, particularly in view of the potential to adversely affect the core business at SQS. This would have resulted in a benchmark of between 15% and 20%. For conservatism, an IRR of 15% is adopted.

Sub-step 2c – Calculation and comparison of financial indicators

The following table summarizes the Project's IRR calculation, including all assumptions made.

Inpu	t Parameters	Value	Unit	Notes
Total cost for CDM project activity		75,000,000	THB	
Loan	Equity percentage	100	%	
	Interest rate	N/A		
	Loan period	N/A		
Annual costs	Operation and	3,750,000	THB/year	5% of total cost
	Maintenance			
	Cost of chemicals	5.5	THB/m ³ effluent	To maintain optimal
				digester operation
Fuel savings		7.77	THB/litre	5-year average oil
				price from 1999 –
	T			2003
Depreciation	Depreciation rate	5,769,231	THB/year	
	Salvage value	5,769,231	THB	
	Salvage year	12		
Tax rate		30	%	Applied to increased
				profit from fuel
				savings
Project life		12	years	
Operating	Operating days in year	330	days	
parameters	COD load of raw effluent	15.0	kg/m ³	Based on historic
				records
	COD treatment efficiency	80	%	From technology
	Biogas generation rate	0.4	m ³ /kgCOD	provider (mid-range
	Biogas methane content	50	% by volume	values adopted)
	Biogas leakage from	15	%	Assumption
	digester			
	Methane energy content	36.3	MJ/m ³	
	Flare rate	0		For normal operation
	Fuel oil heat value	41	MJ/1	From SQS
IRR		8.68	%	

Table 7: Assumptions and results for calculation of the Project's IRR

page 15

As can be seen in the above table, the IRR of the Project if carried out under business-as-usual stands at 8.68%, well below the expected IRR of 15%.

Sub-step 2d – Sensitivity analysis

In order to test the robustness of the assumptions made, sensitivity analyses were carried out as follows:

- 1. 10% decrease in annual costs (O&M and chemicals). This is a realistic target that SQS is striving to achieve.
- 2. 20% increase in biogas capture. This is also a target that SQS is striving to achieve, by maximising the quality and stability of the biogas captured.
- 3. 4% increase in fuel prices. The price rise is based on the average annual price rise over the 5-year period between 1999 and 2003, as calculated in 2003.

The above changes in assumptions increased the IRRs for each of the cases to 10.40%, 14.79% and 14.51% respectively. The sensitivity analyses show that in spite of the range of realistic and optimistic assumptions made, the project returns remain unfavourable.

It is noteworthy that the COD loading of the wastewater is indirectly proportional to the extraction efficiency of the starch in the factory. Thus, maximizing the project activity's returns is at odds with maximizing profits from SQS' core business. Naturally, priority is given to running the core business of starch production, regardless of whether it results a lower COD load and therefore lower biogas yield. The possibility of lower biogas yields exacerbates the problem of a low IRR.

Step 3. Barrier analysis

Sub-step 3a – Identify barriers that would prevent the implementation of the proposed CDM project activity

The implementation of the Project requires an upgrading of skills for the proper operation and maintenance of the anaerobic digester, as well as the gas burners. There are numerous variables, such as the COD load of incoming wastewater and the temperature conditions that affect the quantity and quality of the biogas. As the quality of the biogas feed is crucial to the smooth operation of the burners, which in turn is important for the uninterrupted operation of the starch factory, the upgrading of skills is a significant challenge to SQS.

The challenge is even more significant when taking into account the context of the food processing industry, where very few plant owners have ventured into advanced technology for wastewater treatment. Indeed, it is understood that most projects which are now attempting to introduce this technology is doing so with the assistance of the CDM, while others did so with funding sources no longer available. Against this backdrop, the technology barrier faced by SQS is too high to justify the risk of going ahead under business-as-usual.

Sub-step 3b – Show that the identified barriers would not prevent the implementation of at least one of the alternatives (except the proposed project activity)

The continuation of current practice does not require any upgrading of skills.

It is noted that with regards to the wastewater treatment system, SQS has abundant land as well as access to cheap land in the vicinity in order to expand its current

page 16

The wastewater treatment for the plant expansion could and would have been treated using the existing open lagoon system, either by increasing the number or volume of lagoons. This was what was envisaged when the budget for the plant expansion was originally established in 2003. SQS has access to over 120 ha of available land, more than enough to accommodate such an expansion.

It would have been much cheaper to implement this option, as SQS still has available land. It is also noted that the land around the SQS factory was and still is relatively cheap and available for purchase.

Thus, at least one option, the continuation of current practice, would not have been prevented by the barriers identified in Sub-step 3a.

Step 4. Common practice analysis

Sub-step 4a – Analyze other activities similar to the proposed project activity

According to the Thai Tapioca Starch Association, there are 82 tapioca starch plants in Thailand. Of these, there are approximately 30 plants that have or have just completed the installation of biogas recovery systems.

Sub-step 4b – Discuss any similar options that are occurring

Of all of these Projects, the majority of them have been implemented within the past three years. It is understood that these projects were commenced on the strong expectation, as is the case for SQS, of eventual Thai government approval.

The remaining projects were carried out with the assistance of grants and soft loans, which the other projects including SQS did not have access to.

Starting dates of the project activity and validation

It is required that where the starting date of the project activity falls before the date of validation, evidence is to be provided to show that the incentive from the CDM was seriously considered in the decision to proceed with the project activity. As given in Section C.1.1., the starting date of the project activity, here defined as the commissioning date, was March 2005, which is prior to commencement of the validation.

There is ample evidence to show that SQS seriously considered the CDM from the very early stages of the project development. The Project was considered only after it became known that the Korat wastewater project, the first wastewater-related project in Thailand, had started developing its project as a CDM. Various consultants emphasized the attractiveness of such a project due to the CER revenues, and there was much talk in the industry from all biogas digester suppliers. It is thought that all similar projects were developed with the same goal in mind. It is also worth noting that in 2003, SQS' joint venture partner of the time, AVEBE BA of The Netherlands, strongly recommended to proceed with the Project due to its CDM advantage.

B.6. Emission reductions:

B.6.1. Explanation of methodological cl	hoices:
---	---------

UNFCCC

page 17

The emission reductions due to the Project is calculated in the following manner.

Equation 1

Equation 2

Equation 3

$$ER_y = BE_y - PE_y$$

where

$$BE_{y} = BE_{lagoon,y} + BE_{fuel_oil,y}$$

and

$$PE_{y} = PE_{lagoon,y} + PE_{phys_leak,y} + PE_{sludge,y} + PE_{dewater,y} + PE_{energy_cons,y} + PE_{stack,y}$$

where

where		
BE _{lagoon,y}	=	Baseline CH ₄ emissions from the open lagoons in year y (tCO ₂ e/yr)
BE _{fuel_oil,y}	=	Baseline CO_2 emissions from the combustion of fuel oil in year y (t CO_2 /yr)
PE _{lagoon,y}	=	Project CH_4 emissions from the open lagoons in year y (t CO_2e/yr)
$PE_{phys_leak,y}$	=	Project CH ₄ emissions due to the physical leakage from the anaerobic digester in year y (tCO ₂ e/yr)
PE _{sludge,y}	=	Project CH_4 emissions from the land application of sludge in year y (tCO ₂ e/yr)
PE _{dewater,y}	=	Project CH ₄ emissions from wastewater removed in the dewatering process in year y (tCO ₂ e/yr)
$PE_{energy_cons,y}$		Project CO_2 emissions from the consumption of energy on the account of the project activity in year y (t CO_2 /yr)
PE _{stack,y}	=	Project CH_4 emissions from incomplete combustion of biogas in the flare and boilers in year y (tCO ₂ e/yr)

In the Project's case, $PE_{dewater,y}$ is not relevant and so Equation 3 becomes:

$$PE_{y} = PE_{lagoon,y} + PE_{phys_leak,y} + PE_{sludge,y} + PE_{energy_cons,y} + PE_{stack,y}$$

No leakage is associated with the project activity.

The calculation method and input values of the baseline and project emissions are described in the ensuing tables.

Parameter	Description	Value	Source	
$BE_{lagoon,y} = \sum_{m} (COD_{available,m} \times MCF_{baseline,m}) \times B_{o} \times GWP _ CH_{4}$ Equation				
COD _{available,m}	Monthly COD available for conversion which is equal to sum of the monthly COD entering the digester (COD _{baseline,m}) and the COD carried over from the previous month (kgCOD)	Calculated	Refer to Equation 5	
MCF _{baseline,m}	Monthly methane conversion factor	Calculated	Refer to Equation 8	

Table 8: Formulae, input values and data sources for the calculation of BE	E _{lagoon,y}
--	-----------------------

		1		
	for the open lagoons in the baseline			
	case (fraction)	-	0.01	1) (0010
B _o	Maximum methane producing		0.21	AM0013
	capacity (kgCH ₄ /kgCOD)			
$GWP _ CH_4$	Global warming potential for methane		21	AM0013, consistent
	(tCO_2e/tCH_4)			with IPCC
$COD_{available,m} = COD_{baseline,m}$	+ COD _{carryover,m-1}			Equation 5
COD	Monthly COD of effluent entering	C	lculated	Pafar to Equation 6
COD _{baseline,m}		Ca	liculated	Refer to Equation 6
COD	lagoons (kgCOD) COD that remains in the system from	C	lculated	Defente Equation 7
COD _{carryover,m-1}	the previous month (kgCOD)	Ca	liculated	Refer to Equation 7
	the previous month (kgCOD)			Equation 6
$COD_{baseline,m} = COD_{conc_in,bas}$	$_{eline,m} \times \left(1 - \frac{COD_{conc_out,baseline,m}}{COD_{conc_in,baseline,m}}\right) \times F_{digester} > 1$	« OP _m		1
				N/A
COD _{conc_in,baseline,m}	COD concentration of effluent		15	SQS, to be
	entering the lagoons in the baseline			monitored
	(kgCOD/m^3)			
COD _{conc_out,baseline,m}	COD concentration of final effluent in	0.12		Maximum
	the baseline $(kgCOD/m^3)$			allowable level
				under government
				regulations
F _{digester}	Flow rate of wastewater fed in to the	6,000		SQS, to be
uigestei	digester (m ³ /day)			monitored. Total
				maximum raw
				effluent from the
				factory is
				$7,200 \text{m}^{3}/\text{day}.$
OPm	Number of operation days in month	Month	Op.	SQS, to be
	(day)		Day	monitored
		Jan	31	
		Feb	28	
		Mar	31	
		Apr	30	
		May	31	
		Jun	30	
		Jul	-	
		Aug	31	
		Sep	30	
		Oct	31	
		Nov	30	
		Dec	30	
		Dec	51	

			Equation 7
$COD_{carryover,m-1} = \left[COD_{availab}\right]$	$ e,m-1 \times (1 - MCF_{baseline,m-1})] - (Q_{sludge,m-1} \times C)$	$\text{COD}_{\text{conc}_sludge,m-1}$	
$COD_{available,m-1}$	COD available in previous month (kgCOD)	Calculated	As per calculation of COD available,m
$MCF_{baseline,m-1}$	Monthly methane conversion factor for the open lagoons in the baseline case in previous month (fraction)	Calculated	Refer to Equation 8
$Q_{sludge,m-1}$	Amount of sludge removed in previous month (m ³)	100% of carry over removed	SQS, to be monitored. Sludge
COD _{conc} _sludge,m-1	COD concentration of sludge removed in previous month (kgCOD/m ³)	annually	is currently removed less than once a year
$MCF_{\text{baseline},m} = f_d \times f_{t,m} \times 0.8$	9		Equation 8
f _d	Fraction of anaerobic degradation as a function of depth (fraction)	0.7 (>5m) 0.5 (1 - 5m) 0 (<1m)	AM0013
f _{t,m}	Fraction of anaerobic degradation as a function of temperature, on a monthly basis, where $f_{t,m} \le 1$ (fraction)	Calculated	Refer to Equation 9
$f_{t,m} = exp\left(\frac{E \times (T_2 - T_1)}{R \times T_1 \times T_2}\right)$			Equation 9
E	Activation energy constant (cal/mol)	15,175	Constant
T ₂	Ambient temperature (°K)	Month Temp	Based on ambient
2		Jan 297.16	temperature records,
		Feb 300.16	to be monitored
		Mar 302.16	
		Apr 303.16	
		Ma 302.16	
		у	
		Jun 301.16	
		Jul 301.16	
		Aug 301.16	
		Sep 300.16	
		Oct 300.16	
		Nov 299.16	
–		Dec 297.16	
T ₁	Reference temperature (°K)	303.16	Constant
R	Ideal gas constant (cal/kmol)	1,987	Constant

Parameter	Description	Value	Source
	≜		

Г

CDM – Executive Board

page 20

$BE_{fuel_oil,y} = Q_{fuel_oil,y} \times$	$\rm CO_2 EF_{fuel} \times OX_{fuel}$		Equation 10
Q _{fuel_oil,y}	Quantity of fuel oil consumed in year y at the project site in the absence of the project activity (TJ)	146.62	SQS, to be monitored. Based on approximation of biogas energy content. Total fuel oil requirement in the absence of the project activity is 370TJ, which cannot be wholly replaced.
CO ₂ EF _{fuel}	CO ₂ emission factor for thermal energy generation using fuel oil (tCO ₂ /TJ)	77.4	IPCC 2006 Table 2.2
OX _{fuel}	Oxidation factor for fuel oil (fraction)	1	IPCC 2006 Table 1.4

Table 10: Formula, input values and data sources for the calculation of $\mathsf{PE}_{\mathsf{lagoon},\mathsf{y}}$

Parameter	Description	Value	Source
	Equation 11		
$PE_{lagoon,y} = \sum_{m} \Big(F_{dig}_{out,m} \times C$	$OD_{conc_dig_out,m} \times OP_m \times MCF_{project,m}) \times B_o \times G_{ont}$	$SWP _ CH_4$	
F _{dig_out,m}	Flow rate of wastewater in exiting the	6,000	SQS, to be
	digester to enter the open lagoons in		monitored
	the project activity (m ³ /day)		
COD _{conc_dig_out,m}	Monthly COD of wastewater exiting	3.0	SQS, to be
	the digester to enter the open lagoons		monitored
	in the project activity (kgCOD/m ³)		
OPm	See above	See above	See above
MCF _{project,m}	Monthly methane conversion factor for	Calculated	Calculated as per
1. J	the open lagoons in the project case		Equation 8, where
	(fraction)		MCF _{project,m} is
			analogous to
			MCF _{baseline,m}
B _o	See above	See above	See above
$GWP _ CH_4$	See above	See above	See above

Table 11: Formula, input values and data sources for the calculation of $\mathsf{PE}_{\mathsf{phys_leak},y}$

Parameter	Description	Value	Source
			Equation 12
$PE_{phys_leak,y} = Q_{biogas_total,y}$	$\times W_{CH4} \times \rho_{CH4} \times LF \times GWP_CH4$		
O _{biogas_total,y}	Quantity of biogas produced and	8,078,400	SQS, to be
	collected in the digester in year y $(m^3 biogas/yr)$		monitored

page 21

W _{CH4}	Fraction of CH_4 in biogas (m ³ CH ₄ /m ³ biogas)	0.5	SQS, to be monitored
ρ _{CH4}	Density of CH ₄ (tCH ₄ /m ³ CH ₄)	0.00065	Approximate for 30°C based on density of 0.0007168 tCH ₄ /m ³ CH ₄ at STP
LF	Rate of physical leakage from digester (fraction)	0.15	Default value provided in AM0013, to be monitored if lower value applied
$GWP _ CH_4$	See above	See above	See above

Table 12: Formula, input values and data sources for the calculation of PE_{sludge,y}

Parameter	Description	Value	Source
			Equation 13
$PE_{sludge,y} = Q_{sludge,y} \times \Big(COD$	$B_{sludge,y} \times B_o \times MCF_{Ia} \times GWP _ CH_4 + NC \times EF_{N_2}$	$_{0,0} \times \text{GWP} _ N_2 O \Big)$	
Q _{sludge,y}	Quantity of sludge generated by the	324	SQS, to be
Sludge, y	wastewater treatment in year y (t)		monitored
COD _{sludge,y}	Chemical Oxygen Demand of the	0.10	Assumed in absence
	sludge used for land application		of ex ante data, to be
	(kgCOD/kg sludge)		monitored
B _o	See above	See above	See above
MCF _{la}	Methane correction factor of the sludge	0.05	AM0013
	in year y (fraction)		
GWP_CH ₄	See above	See above	See above
NC	Nitrogen content of sludge (kgN/kg	0.10	Assumed in absence
	sludge)		of ex ante data, to be
			monitored
EF _{N2O}	Emission factor of nitrogen from sludge	0.016	AM0013
2	applied to land (kgN ₂ O/kgN)		
$GWP N_2O$	GWP_N ₂ O Global warming potential for nitrous		IPCC
	oxide (tCO_2e/tN_2O)		

Table 13: Formula, input values and data sources for the calculation of $PE_{energy_cons,y}$

Parameter	Description	Value	Source
$PE_{energy_cons,y} = Q_{elec_cons,y} \times CO_2 EF_{elec} + Q_{fuel_cons,y} \times CO_2 EF_{fuel} \times OX_{fuel}$			Equation 14
Q _{elec_cons,y}	Quantity of electricity consumed due to the project activity in year <i>y</i> (MWh)	0	SQS, to be monitored
CO ₂ EF _{elec}	CO_2 emissions factor for electricity consumed at the project site (t CO_2 /MWh)	N/A	Calculated as per AMS-I.D., in the case electricity is consumed

page 22

O _{fuel_cons,y}	Quantity of fuel oil consumed due to the project activity in year y (TJ)	0	SQS, to be monitored
CO ₂ EF _{fuel}	As above	As above	As above
OX _{fuel}	As above	As above	As above

Table 14: Formula, input values and data sources for the calculation of $\mathsf{PE}_{\mathsf{stack},\mathsf{y}}$

Parameter	Description	Value	Source	
			Equation 15	
$PE_{stack,y} = \left[Q_{biogas_burner,y} \times \right]$	$(1 - CE_{burner}) + Q_{flare,y} \times (1 - CE_{flare})] \times W_{CH4}$	$\times \rho_{\text{CH4}} \times \text{GWP} _ \text{C}$	H ₄	
Q _{biogas_burner,y}	Quantity of biogas to be fed to burner	8,078,400	SQS, to be	
	in year y (m ³ biogas/year)		monitored	
CE _{burner}	Combustion efficiency of burner	0.995	SQS, to be	
	(fraction)		monitored	
O _{flare,y}	Quantity of biogas to be fed to flare in0SQS, to		SQS, to be	
.,	year y (m ³ biogas/year)		monitored	
CE _{flare}			Default value	
	(fraction)		provided in Flaring	
			Tool, for open flare.	
			To be monitored	
W _{CH4}	As above	As above	As above	
$ ho_{CH4}$	As above As above As above		As above	
GWP_CH ₄	As above As above As above			

B.6.2. Data and parameters that are available at validation:

Data / Parameter:	COC _{conc_out,baseline,m}
Data unit:	kgCOD/m ³
Description:	COD concentration of final effluent in the baseline
Source of data used:	Thai government regulation
Value applied:	0.12
Justification of the	Although the actual discharge load may be lower, the maximum allowable COD
choice of data or	load under government regulations, 0.12 kgCOD/m ³ , is used for simplicity and
description of	conservatism.
measurement methods	
and procedures actually	
applied :	
Any comment:	N/A

Data / Parameter:	f _d
Data unit:	Fraction
Description:	Fraction of anaerobic degradation as a function of depth
Source of data used:	AM0013
Value applied:	0.5
Justification of the	This is set as a function of lagoon depth, as per AM0013.

page 23

choice of data or	
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	N/A

B.6.3 Ex-ante calculation of emission reductions:

B.6.3.1 Baseline emissions

Estimation of BE_{lagoon,y}

The formulae and input values given in Table 8 were used to calculate $\mathsf{BE}_{\mathsf{lagoon},\mathsf{y}}$. The results are summarized in Table 15.

	lagoon,y 101 5 th				
Month	Average	f _{t,m}	MCF _{baseline,m}	COD _{available,m}	BE _{lagoon,y}
	Ambient				
	Temperature				
	(°C)				
January	24	0.60	0.27	2,767,680	3,266
February	27	0.78	0.35	4,526,941	6,906
March	29	0.92	0.41	5,728,531	10,343
April	30	1.00	0.45	6,061,649	11,896
May	29	0.92	0.41	6,131,895	11,071
June	28	0.85	0.38	6,299,874	10,459
July	28	0.85	0.38	3,928,308	6,521
August	28	0.85	0.38	5,217,190	8,661
September	27	0.78	0.35	5,931,597	9,049
October	27	0.78	0.35	6,647,249	10,141
November	26	0.71	0.32	7,026,041	9,845
December	24	0.60	0.27	7,561,251	8,923
Total for year					107,081

Table 15: BE for year

Estimation of $\mathsf{BE}_{\mathsf{fuel_oil,y}}$

Using the formula and input values given in Table 9, $BE_{fuel_oil,y}$ was calculated as 11,349 tCO₂/yr.

B.6.3.2 Project emissions

Estimation of PE_{lagoon,y}

Based on the formula and input values provided in Table 10, $PE_{lagoon,y}$ was calculated as $8,512tCO_2e/yr$.

page 24

Estimation of PE_{phys_leak,y}

Using the formula and input values given in Table 11, $PE_{phys_leak,y}$ was calculated as 9,730tCO₂e/yr.

Estimation of PE_{sludge,y}

 $PE_{sludge,y}$ was calculated based on the formula and input values provided in Table 12. The emissions from this source was estimated as $469tCO_2e/yr$.

Estimation of PE_{energy_cons,y}

The emissions from this source was not estimated ex ante, as the increased consumption of grid electricity or fossil fuel on the account of the CDM project activity was considered minimal. Nevertheless, this will be monitored.

Estimation of PE_{stack.v}

Based on the formula and input values provided in Table 14, PE_{stack.v} was calculated as 276tCO₂e/yr.

B.6.4 Summary of the ex-ante estimation of emission reductions:

Year **Estimation of Estimation of Estimation of Estimation of** project activity baseline emissions leakage (tCO₂e) overall emission emissions (tCO₂e) (tCO_2e) reductions (tCO₂e) 2008 18,987 118,430 0 99,443 2009 18,987 118,430 0 99.443 2010 18,987 118,430 0 99,443 2011 18,987 118,430 0 99,443 2012 18,987 118,430 0 99,443 18,987 118,430 0 99,443 2013 2014 18,987 118,430 0 99,443 2015 118,430 99,443 18,987 0 2016 99,443 18,987 118,430 0 2017 18,987 118,430 0 99,443 Total (tonnes of CO₂e) 189,870 1,184,300 0 994,430

Table 16: Ex-ante estimation of emission reductions

B.7 Application of the monitoring methodology and description of the monitoring plan:

B.7.1 Data and parameters monitored:

Data / Parameter:	F _{digester} / F _{dig_out,m}
Data unit:	m ³ /hr
Description:	Flow rate of wastewater fed in to / discharge out of the digester

Source of data to be used:	SQS, directly measured
	6,000
Value of data applied	0,000
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The flow rate is measured continuously using a flow meter. As the digester is
measurement methods	kept in hydraulic balance, only one monitoring point is necessary.
and procedures to be	
applied:	
QA/QC procedures to	The flow meter will be calibrated according to appropriate industry/international
be applied:	standards. The product of the measured flow rate and the measured COD load
	can be double checked against the factory's starch production records, with
	which there is a direct correlation.
Any comment:	Used for the calculations of $BE_{lagoon,y}$ and $PE_{lagoon,y}$

Data / Parameter:	OP _m		
Data unit:	Day		
Description:	Number of operation days in month		
Source of data to be	SQS		
used:			
Value of data applied			
for the purpose of	Month	Operating Days	
calculating expected	January	31	
emission reductions in	February	28	
section B.5	March	31	
	April	30	
	May	31	
	June	30	
	July	-	
	August	31	
	September	30	
	October	31	
	November	30	
	December	31	
Description of	Based on biodi	gester operation	
measurement methods			
and procedures to be			
applied:			
QA/QC procedures to	N/A		
be applied:	Used for the calculation of BE _{lagoon,y}		
Any comment:	Used for the ca	ICUIATION OF BE lagoon, y	
Data / Parameter:	COD _{conc_in,baseline}	e,m	

Data unit:	kgCOD/m ³
Description:	COD concentration of effluent entering the lagoons in the baseline
Source of data to be	SQS, directly measured
used:	
Value of data applied	15
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	This is equivalent to the COD concentration of raw effluent from the starch
measurement methods	factory. The COD load will be measured either using standard COD tests either
and procedures to be	in house or through an outside laboratory, typically once a day.
applied:	
QA/QC procedures to	Standard calibration will be carried out.
be applied:	
Any comment:	Used for the calculation of BE _{lagoon,y}

Data / Parameter:	T ₂			
Data unit:	°K			
Description:	Ambient tempe	erature		
Source of data to be used:	SQS, directly n	neasured		
Value of data applied				
for the purpose of	Month	Average Ambi	ent Temperature	
calculating expected		(°C)	(°K)	
emission reductions in	January	24	297.16	
section B.5	February	27	300.16	
	March	29	302.16	
	April	30	303.16	
	May	29	302.16	
	June	28	301.16	
	July	28	301.16	
	August	28	301.16	
	September	27	300.16	
	October	27	300.16	
	November	26	299.16	
	December	24	297.16	
Description of measurement methods and procedures to be applied:	Daily average	will be monitored, an	d translated to monthly	average.
QA/QC procedures to be applied:		-	local weather data from	an official source.
Any comment:	Used for the ca	lculation of BE _{lagoon,y}		

Data / Parameter:	D _{lagoon,project}
Data unit:	М
Description:	Depth of open lagoons
Source of data to be used:	SQS
Value of data applied for the purpose of calculating expected emission reductions in section B.5	4.5m for all ponds
Description of measurement methods and procedures to be applied:	A marker will be put in place that will indicate the 5m depth, and daily checks will be conducted to show whether the depth is below or above this height.
QA/QC procedures to be applied:	N/A
Any comment:	Used for the calculation of BE _{lagoon,y}

Data / Parameter:	Q _{sludge,m} / Q _{sludge,y}
Data unit:	m^3/t
Description:	Amount of sludge generated and removed in month / year
Source of data to be used:	SQS, directly measured
Value of data applied for the purpose of calculating expected emission reductions in section B.5	For the purpose of estimating $BE_{lagoon,y}$, removal of 100% sludge at year end was assumed. In practice, sludge removal only occurs very infrequently. For estimating $PE_{sludge,y}$, a figure of 324 t/yr was used, based on extrapolation of operating parameters.
Description of measurement methods and procedures to be applied:	The quantity of sludge will be either weighed or measured with a flow meter or V-notch weir and measurement of solids content.
QA/QC procedures to be applied:	Weight scales and flow and density meters will be calibrated according to relevant industry/international standards.
Any comment:	Used for the calculation of $BE_{lagoon,y}$ and $PE_{sludge,y}$

Data / Parameter:	COD _{conc_sludge,m}
Data unit:	kgCOD/m ³
Description:	COD concentration of sludge removed in month
Source of data to be	SQS, directly measured
used:	
Value of data applied for the purpose of calculating expected emission reductions in section B.5	N/A. In <i>ex ante</i> estimation it is assumed sludge is carried over until year end, when all sludge is removed.

Description of	The COD load will be measured either using standard COD tests either in house
measurement methods	or through an outside laboratory. As sludge is removed infrequently, less than
and procedures to be	once a year, the COD test will be carried out not at any set interval, but as sludge
applied:	removal occurs.
QA/QC procedures to	Standard calibration will be carried out.
be applied:	
Any comment:	Used for the calculation of BE _{lagoon,y}

Data / Parameter:	Q _{fuel_oil,y}
Data unit:	TJ
Description:	Quantity of fuel oil displaced in year y
Source of data to be	SQS, directly measured
used:	
Value of data applied	146.62
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The quantity of thermal energy displaced is equivalent to the energy content of
measurement methods	the biogas fed into the burners for production of hot oil.
and procedures to be	
applied:	
QA/QC procedures to	The meter will be calibrated according to appropriate industry/international
be applied:	standards.
Any comment:	Used for the calculation of $BE_{fuel_{oil,y}}$

Data / Parameter:	COD _{conc_dig_out,m}
Data unit:	kgCOD/m ³
Description:	COD out of biodigester to lagoons
Source of data to be	SQS, directly measured
used:	
Value of data applied	3
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The COD load will be measured either using standard COD tests either in house
measurement methods	or through an outside laboratory, typically once a day.
and procedures to be	
applied:	
QA/QC procedures to	Standard calibration will be carried out.
be applied:	
Any comment:	Used for the calculation of PE _{lagoon,y}

Data / Parameter:	Q _{biogas_total,y}

Data unit:	m ³ /yr
Description:	Quantity of biogas produced and collected in the digester in year y
Source of data to be	SQS, directly measured
used:	
Value of data applied	8,078,400
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Flow meters are used to measure the quantity of biogas collected on a continuous
measurement methods	basis, and data aggregated annually.
and procedures to be	
applied:	
QA/QC procedures to	The flow meters will be calibrated according to appropriate ndustry/international
be applied:	standards.
Any comment:	Used for the calculation of PE _{phys_leak,y}

Data / Parameter:	W _{CH4}
Data unit:	m ³ CH ₄ /m ³ biogas (wet basis)
Description:	Fraction of methane in biogas
Source of data to be	SQS, directly measured
used:	
Value of data applied	0.5
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The methane content in biogas will be monitored using online measurements.
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	The gas analyzer will be calibrated according to appropriate
be applied:	industry/international standards.
Any comment:	Used for the calculation of $PE_{phys_leak,y}$ and $PE_{stack,y}$

Data / Parameter:	COD _{sludge,y}
Data unit:	kgCOD/kg sludge
Description:	Chemical Oxygen Demand of the sludge used for land application
Source of data to be	SQS, directly measured
used:	
Value of data applied	0.10
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	At least monthly, or as sludge removal occurs, if sludge removal occurs less

measurement methods and procedures to be applied:	frequently.
QA/QC procedures to	Standard calibration will be carried out.
be applied:	
Any comment:	For the calculation of PE _{sludge,y}

Data / Parameter:	NC
Data unit:	kgN/kg sludge
Description:	Nitrogen content of sludge
Source of data to be	SQS, directly measured
used:	
Value of data applied	0.10
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	At least monthly, or as sludge removal occurs, if sludge removal occurs less
measurement methods	frequently.
and procedures to be	
applied:	
QA/QC procedures to	Standard calibration will be carried out.
be applied:	
Any comment:	For the calculation of PE _{sludge,y}

Data / Parameter:	$Q_{elec_cons,y}/Q_{elec_cons,y}$
Data unit:	MWh / TJ
Description:	Quantity of electricity / fuel oil consumed due to the project activity in year y
Source of data to be used:	SQS, directly measured
Value of data applied for the purpose of calculating expected emission reductions in section B.5	0
Description of measurement methods and procedures to be applied:	The consumption will be measured by a continuous electricity / flow meter, with data aggregated monthly.
QA/QC procedures to be applied:	The flow meter will be calibrated according to appropriate industry/international standards.
Any comment:	Used for the calculation of PE _{energy_cons,y}

Data / Parameter:	CO ₂ EF _{elec}
Data unit:	tCO ₂ /MWh
Description:	CO ₂ emission factor for electricity consumed at project site

Source of data to be	EGAT/EPPO/DEDE
used:	
Value of data applied	N/A
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Calculated as per AMS-I.D
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	N/A – data are obtained from official sources
be applied:	
Any comment:	Used for the calculation of PE _{energy_cons,y}

Data / Parameter:	Q _{biogas_burner,y} / Q _{biogas_flare,y}
Data unit:	m ³ biogas/h
Description:	Volumetric flow rate of the biogas in dry basis at normal conditions in the hour
	h
Source of data to be	SQS, directly measured
used:	
Value of data applied	N/A – for the purpose of <i>ex ante</i> estimation, $Q_{biogas_burner,y}$ and $Q_{biogas_flare,y}$ were
for the purpose of	used.
calculating expected	
emission reductions in	
section B.6	
Description of	This parameter will be continuously measured by a flow meter. The same basis
measurement methods	(dry or wet) is considered for this measurement and the measurement of
and procedures to be	volumetric fraction of all components in the biogas ($fv_{i,biogas,h}$) when the biogas
applied:	temperature exceeds 60°C. Value to be averaged hourly or at a shorter time
	interval.
QA/QC procedures to	Flow meters are to be periodically calibrated according to the manufacturer's
be applied:	recommendation.
Any comment:	Used for the calculation of PE _{stack,y}

Data / Parameter:	T _{flare}
Data unit:	°C
Description:	Temperature of the exhaust gas of the flare
Source of data to be	SQS, directly measured
used:	
Value of data applied	N/A
for the purpose of	
calculating expected	
emission reductions in	
section B.6	
Description of	This parameter will be measured in the flare by a Type N thermocouple. A

measurement methods and procedures to be applied:	temperature above 500°C indicates that a significant amount of gases are still being burnt and that the flare is operating. If there is no record of the temperature of the exhaust gas of the flare or if the recorded temperature is less than 500 °C for any particular hour, it shall be assumed that during that hour the flare efficiency is zero.
QA/QC procedures to be applied:	Thermocouples should be replaced or calibrated every year.
Any comment:	Used for the calculation of PE _{stack,y}

Data / Parameter:	Flare operation parameter
Data unit:	min/h
Description:	Minutes that flare is detected during the hour h
Source of data to be	SQS, directly measured
used:	
Value of data applied	0
for the purpose of	
calculating expected	
emission reductions in	
section B.6	
Description of	Measured continuously using a flame detector
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	
be applied:	
Any comment:	Used for the calculation of PE _{stack,y}

Data / Parameter:	Т
Data unit:	°C
Description:	Temperature of the biogas
Source of data to be	SQS, directly measured
used:	
Value of data applied	N/A – not estimated <i>ex ante</i> as density assumed to be $0.00065tCH_4/m^3CH_4$.
for the purpose of	However, temperature after blowers is $60 - 70^{\circ}$ C.
calculating expected	
emission reductions in	
section B.6	
Description of	This parameter will be measured continuously/periodically by a meter. The
measurement methods	measured data is used to determine the density of methane ρ_{CH4} . No separate
and procedures to be	monitoring of temperature is necessary when using flow meters that
applied:	automatically measure temperature and pressure, expressing biogas volumes in
	normalized cubic meters.
QA/QC procedures to	Meter will be subject to a regular maintenance and calibrated in accordance
be applied:	with the national or international approved standards and procedures.
Any comment:	Used for the calculation of PE _{stack,y}

Data / Parameter:	Р
Data unit:	bar
Description:	Pressure of the biogas
Source of data to be used:	SQS, directly measured
Value of data applied for the purpose of calculating expected emission reductions in section B.6	N/A – not estimated <i>ex ante</i> as density assumed to be 0.00065tCH ₄ /m ³ CH ₄ . However, pressure after blowers is approximately 450mb g.
Description of measurement methods and procedures to be applied:	This parameter will be measured continuously/periodically by a meter. The measured data is used to determine the density of methane ρ_{CH4} . No separate monitoring of temperature is necessary when using flow meters that automatically measure temperature and pressure, expressing biogas volumes in normalized cubic meters.
QA/QC procedures to be applied: Any comment:	Meter will be subject to a regular maintenance and calibrated in accordance with the national or international approved standards and procedures. Used for the calculation of PE _{stack,y}

Data / Parameter:	Q _{burner_stack,y}
Data unit:	m ³ /yr
Description:	Amount of burner stack gas in year y
Source of data to be	SQS, directly measured
used:	
Value of data applied	N/A – for the purpose of the <i>ex ante</i> estimation, $PE_{stack,y}$ was approximated as a
for the purpose of	percentage of methane fed to the burner.
calculating expected	
emission reductions in	
section B.6	
Description of	This parameter will be obtained from the flow rate of the burner stack gas and
measurement methods	the amount of time the gas is combusted in the burner.
and procedures to be	
applied:	
QA/QC procedures to	Standard calibration will be carried out.
be applied:	
Any comment:	Used for the calculation of PE _{stack,y}

Data / Parameter:	W _{CH4_stack}
Data unit:	m ³ CH ₄ /m ³ stack gas
Description:	Fraction of methane in burner stack gas
Source of data to be	SQS, directly measured
used:	
Value of data applied	0.995
for the purpose of	
calculating expected	

page 34

emission reductions in section B.6	
Description of measurement methods and procedures to be applied:	This parameter will be measured at least quarterly, in line with AM0013.
QA/QC procedures to be applied:	Meter will be subject to a regular maintenance and calibrated in accordance with the national or international approved standards and procedures.
Any comment:	Used for the calculation of PE _{stack,y}

Data / Parameter:	Regulations and incentives relevant to wastewater
Data unit:	
Description:	Thai regulations and/or incentives relevant to wastewater that may impact the baseline
Source of data to be used:	Thai official documents
Value of data applied for the purpose of calculating expected emission reductions in section B.5	N/A
Description of measurement methods and procedures to be applied:	Will be assessed at the renewal of the crediting period
QA/QC procedures to be applied:	N/A
Any comment:	N/A

B.7.2 Description of the monitoring plan:

SQS will appoint an executive to be responsible for all data monitoring, acquisition and recording for CDM purposes. Staff will be trained in the operation of all monitoring equipment and all readings will be taken in a systematic and transparent manner under the supervision of management. Quality control and assurance procedures are to be undertaken for data monitored as outlined in the monitoring plan, which will be developed. A database will be maintained to record all relevant data as in the monitoring plan.

The management team will review the data archived and submit a complete set of documentation, which indicates the calculation procedure as well as the *ex post* emission reduction estimate, to the general manager regularly. In addition to the internal verification by general manager, this properly recorded documentation will also be verified externally by an independent Designated Operational Entity (DOE) on an annual basis.

B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies)

page 35

CDM – Executive Board

The baseline study was completed in April 2007 by MUS.

Clean Energy Finance Committee Mitsubishi UFJ Securities Co., Ltd. Tokyo, Japan Phone: +81-3-6213-6331 E-mail: <u>hatano-junji@sc.mufg.jp; ktochikawa@cefconsulting.com</u>

MUS is a project participant as defined by the CDM Executive Board. Contact details are provided in Annex 1.

SECTION C. Duration of the project activity / crediting period

C.1 Duration of the <u>project activity</u>:

C.1.1. <u>Starting date of the project activity:</u>

31/03/2005

C.1.2. Expected operational lifetime of the project activity:

10 years

C.2	Choice of the crediting period and related information:
------------	---

C.2.1. Renewable crediting period

C.2.1.1. Starting date of the first <u>crediting period</u>:

This section is intentionally left blank.

C.2.1.2. Length of the first crediting period:

This section is intentionally left blank.

C.2.2.	Fixed crediting period:	
	C.2.2.1.	Starting date:

01/01/2008

C.2.2.2. Length:

10 years

page 36

SECTION D. Environmental impacts

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

The Project will contribute to the following major positive environmental impacts:

- Improvement of local air quality odour. One of the major problems associated with wastewater treatment is the pungent odour arising from the open lagoons, during the long decomposition process. By treating the wastewater from the starch factory in a digester that allows accelerated decomposition in a controlled environment, this will significantly improve the air quality, which is important not only beyond the SQS factory's borders, but also to SQS staff within the grounds.
- Improvement of local air quality fossil fuel. By using the methane contained in the recovered biogas, the Project taps into an unused, environmentally friendly and renewable energy source. In doing so, it will reduce the consumption of fuel oil at the SQS factory.
- Improvement of security of local ground water. Since the biodigester is lined and covered with PE sheet, there is greater security against leakage of waste water into the water sources around the factory compared with open lagoons which could seep or overflow. This has proven to be an important point with the local stakeholders.

No negative impacts are identified with the Project.

D.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

Under Thai regulations, no environmental impact assessment or equivalent were required for the project activity.

page 37

SECTION E. <u>Stakeholders'</u> comments

E.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled:

SQS invited local leaders to inspect its factory premises on May 2, 2006. A total of 38 persons, including the management and committee members of the Khokrerngrom and Khokphechrphattana Tambol Administrative Councils² and a Kamnan and Village Head from the Khokrerngrom area attended the session. SQS was represented by the following personnel:

Mr. Weerasit Mahattanakhun	Assistant Administration. Division Manager
Mr. Sampart Rerkchawee	Engineering Section Manager
Mr. Wiratn Wosri	Assist. Personnel Section Manager
Ms. Phentip Jatunawaratn	Quality Control Officer
Ms. Saengduan Em-O	Quality Systems Officer
Mr. Pleumjit Buasri	Project Engineer
Mr. Anant Thipprathum	Electrical Technician
Mr. Nikul Jekthao	Mechanical Technician
Mr. Sura Narongchai	Personnel Officer

The session included:

- Opening remarks by Mr. Weerasit Mahattanakhun
- A video presentation about SQS
- A presentation of Production Facilities
- A presentation of Wastewater Treatment System
- A presentation of Biogas Plant
- Inspection of the Factory

² A Tambol consists of a cluster of 5 - 10 villages

page 38

Figure 4: The presentation of the Project by the Engineering Section Manager

Figure 5: Visitors inspecting the biogas plant

E.2. Summary of the comments received:

Two main issues were raised during the session:

page 39

UNFCO

- 1. It was requested that SQS stop discharge of all water, including rainwater, to the nearby irrigation canal to ensure no contamination of the water;
- 2. The bad smell from the wastewater treatment plant is causing nausea to people in the new village of Somboon Wattana during the rainy season and when prevailing winds blow in that direction;

Other issues such as payment to local farmers for the tapioca root and local taxes were also discussed.

E.3. Report on how due account was taken of any comments received:

- 1. In response to the complaint of discharge, the participants were invited to inspect the wastewater channel and shown how soil subsidence caused runoff into the nearby creek. It was explained that this fault had been rectified and the participants were also informed of measures that would prevent a repetition of the runoff. Moreover, the participants made their own recommendations on how to prevent rainwater from flowing into the irrigation channel, which is mistaken for wastewater discharge, and SQS made a commitment to following their recommendations in the future;
- 2. It was explained to the attendees that by installing an advanced system which will allow for a faster treatment of wastewater in an enclosed environment, the Project will dramatically reduce the bad odour affecting the villagers. This was received enthusiastically by the participants;

As a result of the session, the local representatives were impressed that SQS was willing to take the lead in implementing an advanced solution to not only effectively treat wastewater but one that would drastically reduce the bad odour. They were satisfied that they will be able to report back positively to villagers to whom they are ultimately accountable.

page 40

Annex 1

Department:

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	Siam Quality Starch Co., Ltd. (Project Owner)
Street/P.O.Box:	38/6 Moo 11 Pathumthani-Ladlumkaew Road
Building:	
City:	Kubangluang, Ladlumkaew
State/Region:	Pathumthani
Postfix/ZIP:	12140
Country:	Thailand
Telephone:	+66 (0)2 598 3135 to 38
FAX:	+66 (0)2 598 3139
E-Mail:	
URL:	
Represented by:	
Title:	Enginering Section Manager, Chairman ISO 14000 Committee
Salutation:	Mr.
Last Name:	Rerkchawee
Middle Name:	
First Name:	Sampart
Department:	
Mobile:	
Direct FAX:	+66 (0)44 815 550
Direct tel:	+66 (0)44 815 555 ext. 300
Personal E-Mail:	sampart@sqs.co.th
Organization:	Mitsubishi UFJ Securities Co., Ltd. (CDM Advisor)
Street/P.O.Box:	2-4-1 Marunouchi, Chiyoda-ku
Building:	Marunouchi Building, 26 th Floor
City:	Tokyo
State/Region:	
Postfix/ZIP:	100-6317
Country:	Japan
Telephone:	+81 3 6213 6331
FAX:	+81 3 6213 6175
E-Mail:	
URL:	http://www.sc.mufg.jp/english/e_cefc/
Represented by:	
Title:	Chairman, Clean Energy Finance Committee
Salutation:	Mr.
Last Name:	Hatano
Middle Name:	
First Name:	Junji

Clean Energy Finance Committee

Mobile:	
Direct FAX:	+81 3 6213 6175
Direct tel:	+81 3 6213 6331
Personal E-Mail:	hatano-junji@sc.mufg.jp

page 42

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

The Project does not involve funding from an Annex I country.

page 43

Annex 3

BASELINE INFORMATION

Please refer to Section B.6. for details.

page 44

Annex 4

MONITORING INFORMATION

Please refer to Section B.7. for details.

- - - - -