

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 02 - in effect as of: 1 July 2004)

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline methodology</u>
- C. Duration of the project activity / Crediting period
- D. Application of a <u>monitoring methodology</u> and plan
- E. Estimation of GHG emissions by sources
- F. Environmental impacts
- G. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: Baseline information
- Annex 4: Monitoring plan

page 2

SECTION A. General description of project activity

A.1 Title of the <u>project activity</u>:

Use of waste gas use for electricity generation at Jindal Thermal Power Company Limited (JTPCL)

A.2. Description of the project activity:

The project in JTPCL involves putting in place systems and infrastructure for generation of electricity using corex gas and other waste gases, that were otherwise being flared off in Jindal South West Steel Limited (JSW)¹.

JTPCL has been commissioned to generate electricity using imported coal and waste gas. The electricity generated is supplied to JSW and the state grid namely Karnataka Power Transmission Corporation Limited (KPTCL). The input fuel to the JTPCL power plant is sourced from JSW, which is generating waste gas from its process and sourcing imported coal .The project helps in reducing Greenhouse Gas (GHGs) emission into the atmosphere by increasing the proportion of waste gas in the fuel configuration.

During the initial operation period, the project had experienced uncertainties in the availability and steadiness of supply of the corex gas and other waste gases from JSW. Accordingly, JTPCL had dropped the plan of utilizing waste gas, and accordingly had applied and obtained the requisite approval from Karnataka Pollution Control Board (KPCB) to combust coal exclusively. Subsequently, during March 2001, JTPCL management took the decision for the current project activity so that the use of waste gas is maximised in the fuel configuration and reduce the emission of GhG's This decision has seriously internalised potential benefits of CDM. Besides, potential CDM benefits, there is no other incentive for JTPCL to maximise the use of waste gases for power generation.

The project activity involved additional investments (to the investment in power generation using coal) to achieve a steady supply of the waste gas to the tune of INR 240 Million.

Contribution of project activity to sustainable development :

- The project activity involves generation of electricity using waste gas, thus displacing a certain amount of fossil fuel used for electricity generation. This has resulted in reduced GHG intensity per unit of electricity generation for state grid and in total the carbon intensity of Karnataka state has been reduced.
- The project demonstrates harnessing power from waste gas sources, which will encourage replication of such project in future across the region.
- The project has reduced the local air pollutants and environmental impacts due to increased share in the use of waste gas in the fuel configuration.
- The project has built up a knowledge base about the operation of the waste gas based power generation and has built up a skill set for such kind of operation.

¹ JSW Steel Limited (formerly Jindal Vijaynagar Steel Limited (JVSL))

page 3

• This project will demonstrate the use of new financial mechanism (CDM) in raising finance for power generation from waste gases.

A.3. <u>Project participants</u>:

Name of Party involved (*)((host) indicates a host Party)	Private and/or public entity(ies) project participants (*) (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)
Govt. of India	Jindal Thermal Power Company Limited (JTPCL)	No

A.4. Technical description of the <u>project activity</u>:

	A.4.1.2.	Region/State/Province etc.:
Karnataka (stat	e)	

A.4.1.3. City/Town/Community etc:

Toranagallu, Bellary (District)

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

The project is located adjacent to JSW Steel Ltd at a distance of about 2 km from Toranagallu village of Bellary district in Karnataka on the state highway connecting Bellary and Sandur. The plant site is situated between Bellary and Hospet, which are 70 km apart. The nearest railway station is Toranagallu. The power plant is located on an area of 250 acres, acquired by JTPCL from KSIDC. The geographical location of the JTPCL plant is approximately 15^o 9' latitude (N) and 76^o 51' longitude (E). Figure 1 below gives an overview of the plant.

page 4

Figure1: JTPCL Site Overview

Geographical location of the plant in a map of Karnataka state has been depicted in Figure 2 on the next page.

page 5

Figure 2: Geographical Position of Plant Location

A.4.2. Category (ies) of project activity:

Sector: Energy Category 2: Energy Distribution

A.4.3. Technology to be employed by the project activity:

The project activity involves combustion of waste gas and coal (and HFO & LDO are start up fuels) in various proportions to generate electricity. The thermal power plant mainly consists of boiler, turbine, generator and other auxiliary system.

Waste gas/coal are burnt in the furnace of the boiler. The walls of this furnace are made of membrane wall. i.e., water tubes welded to each other. The water circulated through the water wall tubes absorbs the heat generated by combustion and this in turn generates steam. This water-steam mixture goes to the steam drum where the steam is separated. The process of passing through superheater tubes arranged within the furnace leads to superheating of this steam. This high pressure and high temperature steam is then routed to a steam turbine. The thermal energy of the steam is converted to mechanical energy by expansion of steam (through reduction in its temperature and pressure) in the turbine. This rotational energy is then used to drive the generator, which produces electricity.

page 6

Steam from the turbine is condensed in the condenser. Cooling water is circulated through the condenser to condense the steam. The condensate is pumped through low-pressure heaters to a deaerating unit. The low-pressure heaters are supplied with steam extracted from the low-pressure stages of the turbine for heating the condensate. From the deaerator that removes dissolved oxygen from the water, water is pumped through high-pressure heater to the boiler by means of boiler feed pump. The high-pressure heaters receive steam from high-pressure stages of the turbine. The heaters are provided for improving the thermal efficiency of the cycle.

A demineralizing (DM) plant meets the demineralized water requirement for the feed water make-up to the boiler. It also employs a closed circuit cooling water system in which the cooling water from the condenser outlet is cooled in an induced draft-cooling tower.

Coal after grinding to a fine powder in the mill is mixed with primary air and supplied to the coal burners. The air for combustion (secondary air) is supplied through forced draft fans. Combustion products i.e. flue gases from the boiler are cooled down in air preheaters and then passed through the chimney by induced draft fans.

The specific feature in the project activity thus required additional investment (to the baseline operation) by the proponent, to improve the reliability and availability of the waste gases for power generation. The gas holder has been installed to achieve stabilization in the gas supply. Steam generators were designed to fire 100% waste gas or 100% coal firing or the combination of both for power generation to its full capacity.

The overall technology employed is unique (stabilization of COREX gas and other waste gases and use of these for power generation) in itself and first of its kind in India. The technology adopted for power generation is environmentally safe and sound. The salient features are:

- Improved design of dust recycling system;
- Turbine: Combined HP-IP Turbine; double flow LP turbine, tandem compound, reaction, single reheat, condensing type.
- 60% HP-LP by pass station for quick start-up and house load operation of the unit.
- Turbo Generator is of hydrogen-cooled type with ratings of 162.5 MVA, 10.5 kV, 50 Mz, 0.8 power factor.
- Control System: Completely automatic control employing Distributed Control System integrated with programmed logic controllers for external systems.
- Special design of steam generator to limit emission of oxides of Nitrogen (NOx).
- Electrostatic precipitator designed for 100% coal firing to reduce particulate emission.
- Tangential fuel firing with over fire air damper control system with 12 numbers of coal burners (supported by 3 coal mills) and 12 numbers of Corex gas burners. There are three elevations of coal and three elevations of Corex burners in the boiler.
- All the burners are placed in the corner of the boiler at different elevations. These burners are tilting type and flame path can be adjusted for efficient combustion.
- The firing system is the low NOx emissions due to tangential firing with over fire air (OFA) damper control system. 30% reduction in NOx emissions have been reported due to corner tangential fired burner system with over fire air damper. Continuous Emission monitoring System is established for the online monitoring of different gas like SOx, NOx etc.

page 7

A.4.4. Brief explanation of how the anthropogenic emissions of anthropogenic greenhouse gas (GHGs) by sources are to be reduced by the proposed CDM <u>project activity</u>, including why the emission reductions would not occur in the absence of the proposed <u>project activity</u>, taking into account national and/or sectoral policies and circumstances:

This project involves use of waste gas for generation of power from it. This in turn displaces a certain amount of use of coal as fuel for power generation. In the absence of the project activity the waste gas would have been flared off and the same amount of power would have been generated using coal as a fuel. The amount of coal that has been displaced due to utilisation of waste gas has resulted in savings of fossil fuel consumption. Thus the project activity is reducing GHG emission.

Legislations in India do not mandate utilization of waste gases for power generation. There is also no immediate plan of the Ministry of Environment and Forests, India to introduce any legislation related to use of waste gas for power generation. Therefore JTPCL did not have any statutory compulsion to implement the project.

The project activity substitutes the use of coal for power generation, additional to the existing practise in compliance with national /sectoral regulations/policies/circumstances, thus reducing GHG emissions to the atmosphere. The total project emission for the 10-year crediting period works out to be 13,165,341.t CO2e.

A.4.4.1. Estimated amount of emission reductions over the chosen <u>crediting</u> period:

Total estimated emission reduction =13,165,341 t CO2e Total number of crediting years = 10 years

A.4.5. Public funding of the <u>project activity</u>:

Public funding, such as grants from official development funds, is not involved in this project.

SECTION B. Application of a <u>baseline methodology</u>

B.1. Title and reference of the <u>approved baseline methodology</u> applied to the <u>project activity</u>:

>> Title: Consolidated baseline methodology for waste gas and/or heat for power generation Reference: Approved consolidated baseline methodology ACM0004 / Version 01, Sectoral Scope: 01, 8 July 2005

B.1.1. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity:</u>

>> This methodology applies to project activities that generate electricity from waste heat or the combustion of waste gases in industrial facilities.

The methodology applies to electricity generation project activities:

- that displace electricity generation with fossil fuels in the electricity grid or displace captive electricity generation from fossil fuels, electricity;
- where no fuel switch is done in the process where the waste heat or the waste gas is produced after the implementation of the project activity

page 8

The methodology covers both new and existing facilities. For existing facilities, the methodology applies to existing capacity, as well as to planned increases in capacity during the crediting period. If capacity expansion is planned, the added capacity must be treated as a new facility.

The above conditions are applicable to the project activity in the following way:

- The project activity has changed the fuel configuration in 2 units of 130 MW each and both units are generating power using waste gas displacing power generation from coal use.
- The project uses waste gas coming out of the JSW processes. In the absence of the project activity the waste gas would have been flared off by JSW. However, now the surplus waste gas is collected by JSW and sold to JTPCL for power generation.
- There is no fuel switch involved in the JSW process that is the source of the waste gases.
- The project activity applies to the existing facility.

The above arguments justify that the project meets all applicability criteria of the selected approved consolidated methodology ACM0004 and hence is applicable to the project.

B.2. Description of how the methodology is applied in the context of the <u>project activity</u>:

The basic assumption of the baseline methodology is that in the absence of the project activity the available waste gas would have been flared off and the electricity would have been generated through use of coal.

The methodology ACM0004 is applied in the following steps:

- 1. Identification of alternative baseline scenarios consistent with current laws and regulations;
- 2. Additionality assessment of the project applying "Tool for the demonstration and assessment of additionality";
- 3. Determination of project emission;
- 4. Determination of baseline emission;
- 5. Estimation of emission reduction;

The project participant is the power producer so the baseline scenario alternatives include all possible options that provide or produce electricity for sale to grid and/or other consumers.

- The baseline options considered do not include those options that:
- do not comply with legal and regulatory requirements; or
- depend on key resources such as fuels, materials or technology that are not available at the project site.

Identification of alternative baseline scenarios

A possible set of alternative is drawn up which will be there in the absence of the CDM activity.

Alternative (a): The project activity without the CDM revenue

Alternative (b): Continue with existing power generation using coal

Alternative (c): Other uses of the waste gas

Alternative (a): The proposed project activity without the CDM revenue

- 1. The project has many uncertainty factors associated with the corex process of JSW. The fluctuations in gas production at JSW can/will cause disturbance in the production of the electricity. This will result in temporary loss of power production. In the worst case, a unit trip causes a complete loss of electric output.
- 2. To create a steady gas supply requires investment in a buffer tank costing INR 240 million.
- 3. JTPCL has no incentive to invest into the gas hoder, as the cost of gas and coal are same per GCal.
- 4. Accordingly, this alternative is not financially attractive to the investor.

page 9

Alternative (b): Continue with existing power generation using coal

- 1. JTPCL had consent for operation of the plant by using COREX gas at 20% and coal at 80% or firing of corex gas or coal in any combination of 0 to 100% from Karnataka Pollution Control Board. This had given JTPCL an option to operate the plant using coal as fuel. This option minimizes the uncertainty of the availability of power due to disturbance in the supply of waste gases.
- 2. In this alternative scenario there was no need for the installation of the gas holder. This results in saving of INR 240.00 million.
- 3. The fuel purchase agreement also provides no incentive to prefer waste gases over the coal as fuel. The price of the waste gas has been decided on the basis of coal price at 6500Kcal/kg (calorific value of the imported coal is 6500 kcal/kg) for equivalent Gcal.
- 4. In the existing power generation using coal the surplus waste gas would have been flared off. The coal is imported and is available to JSW.
- 5. All the above arguments demonstrate that this alternative has crossed all the prohibitive barrier and is an economically attractive option. In the absence of the CDM project activity and potential revenue thereof it is likely that JTPCL could have opted for this alternative.

This alternative option is the most conservative case.

Alternative (c): Other uses of the waste gas

- 1. The amount of waste gas can be used for heat generation. However, there is no demand for such kind of process requirements in the JTPCL.
- 2. Given the existing situation at the location and prevailing conditions the realization of alternative (c) is ruled out.

This reduces the list of plausible alternative to Alternative (b): Continue with existing power generation using coal.

The alternative (b) is possible under the current regulatory conditions.

Step 2: Additionality assessment of the project applying *"Tool for the demonstration and assessment of additionality"*:

Refer to the next section B.3 of this project design document.

Step 3: Determination of project emission:

Coal and HFO/LDO are used as fuel and start up fuel respectively in project activity. The total project emission for a given year is equal to the quantity of fuel used in a year multiplied by NCV which is again multiplied by Emission factor, oxidation factor and 44/12.

Project emissions are given as: PE y = $\sum Qi \times NCVi \times EFi \times 44/12 \times OXIDi....1$ Where:

PEy =Project emissions in year y (tCO2)

Qi = Mass or volume unit of fuel i consumed (t or m^3)

NCVi =Net calorific value per mass or volume unit of fuel i (TJ/t or m³)

EFi =Carbon emissions factor per unit of energy of the fuel i

OXIDi =Oxidation factor of the fuel i (%); (99%, IPCC default values)

1 for Coal

page 10

2 for LDO 3 for HFO

Step 4: Determining the baseline emissions: (EFy)

As per the baseline alternative review the alternative Alternative (b): Continue with existing power generation using coal as fuel. The electricity generated is sold to JSW and then to KTPCL. So considering the same kind of situation the existing power generation emission is calculated as similar to the option 1 of ACM 0004. For determination of baseline emissions, project participant has included the following emission sources: CO_2 emissions from coal consumption.

Baseline emissions are given as :

BE y = EGy.EFy

EGy : net quantity of electricity supplied to the manufacturing facility by the project during the year y in MWH, and

EFy: CO₂ baseline emission factor for the electricity displaced due to project activity during the year y

EF_{CO2.i},i×3.6 TJ×44

Eff captive ×1000MWh×12

EFv	Emission factor for the power generation unit
EF _{CO2} ,i	CO_2 emissions factor of fuel used in power generation (tC/TJ)
Eff _{captive}	Efficiency of the power generation (%)
44/12	Carbon to Carbon Dioxide conversion factor
3.6/1000	TJ to MWh conversion factor

Leakage

No leakage is considered

Step 5: Estimation of Emission Reduction:

The emission reduction ERy by the CDM project activity during a given year y has been calculated as the difference between the baseline emissions though substitution of electricity generation with percentage of fossil fuels (BEy) and project emissions (PEy).

B.3. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM <u>project activity</u>:

As required by the approved methodology, the additionality of the project activity shall be demonstrated and assessed using the latest version of the "Tool for the demonstration and assessment of additionality" agreed by the CDM Executive Board, available at the UNFCCC CDM web site Steps followed under the "Tool for the demonstration and assessment of additionality" are as follows:

page 11

Steps for	Demonstration of crossing Barriers	Remarks
Additionality		
Check		
Step 0: Preliminary	screening based on the starting date of the project activity.	
Has the project	Yes.	The project
started after 1 st	The project activity has started during July 2001.	activity has
January 2000? If	The CDM was seriously considered in the decision to proc	crossed step 0 of
yes, is there	with the project activity. Such an evidence is available in	the additionality
verifiable evidence	form of background notes provided to the Board of Direct	ors; demonstration,
to justify that	and exchange of information with a third party. This evide	and hence this
CDM was	will be made available to the DOE.	assessment can
seriously		move to step 1.
considered in the		
decision to		
proceed with the		
project activity?		
Step 1. Identification	n of alternatives to the project activity consistent with curren	nt laws and regulations
Sub-Step 1a:	A possible set of alternative is drawn up which will be the	nere
Define alternatives	in the absence of the CDM activity.	
to the project	• Alternative (a): The project activity without the C	DM
activity.	revenue	
	• Alternative (b): Existing power generation using coa	l as
	fuel	
	• Alternative (c): Other uses of the waste gas	
Sub- Step 1b:	There is no legal requirement or framework to obligate the	use The project
Enforcement of	of corex gas and waste gas as fuel for power generation	n or activity has
applicable laws	other use.	crossed sub-step 1
and regulations.	• It may be noted that the Indian Electricity Act of 2	003 of additionality
	does not restrict or empower any authority to restrict	the demonstration,
	fuel choice for power generation.	and hence this
	• In addition, the draft National Electricity Policy (rev	ised assessment has
	in August 2004) asserts 'coal would necessarily conti	nue moved to the next
	to remain the major fuel'.	step 2 investment
	• The applicable environmental regulations do not rest	trict analysis.
	the choice of fuel for generation units located anywher	e in
	India.	
	• Also there is no legal requirement on the choice of	of a
	particular technology for power generation	
	• Currently India's legislations also do not mandate	that
	waste gas has to be used	

Step 2: Investment analysis

Determination of whether proposed activity is economically and financially less attractive than the other alternatives without the revenue from the sale of certified emission reductions.

Sub- Step 2a. Investment analysis: Determine appropriate analysis method

page 12

	 The price of Agreement) 6500K cal/k 6500 k cal/k accounts for JTPCL doe configuration in the fuel of is based on Authority. The propose KPTCL ass is 657 Milling the surplus demand of . The price of totally inder signed with 2000-2001 there is no the fuel con The procurement supply quanta is Year 01-02 02-03 03-04 04-05 This demonstrate additional reveat additional use of coal per Gcal As the additional complicable of the supplicable of the super supplicable of the supplicable	of the waste gas(as) is decided on the g (calorific value of ag) for equivalent Go r the change in calor s not have incentive on or maximisation of configuration. Such a guidance provided ed project' exports ured purchase level (fon KWHs per tariff electricity to the KP JSW and auxiliary co of the electricity pur- pendent of the fuel n Rs 2.60/kwh as t with an escalation (<i>a</i> incentive to maximis figuration. In price of the power s provided below for Upto 657 MU Rs 2.73/Kwh Rs 2.8665/Kwh Rs 3.1603 thes that the project nues by the sale of of waste gas in compa- el as the price of wall. itional investment in no other benefit and hence the CI ERs), application of s	per the Fuel Supply basis of coal price at the imported coal is al. The price formula ific value of coal . So for change in the fuel f the use of waste gas a pricing of waste gas by Central Electricity electricity to KPTCL. APL) from the project beriod. JTPCL exports FCL after meeting the nsumption. chased by KPTCL is type. The PPA was he baseline price for 0 5% every year. So se use of waste gas in by KTPCL at various further illustration. Beyond 657 MU Rs 2.31/Kwh Rs 2.5468/Kwh Rs 2.6714/Kwh activity generates no power in the case of arison to that of use of ste gas is same as that CDM project activity than GHG emission DM revenues(sale of simple cost analysis is	
Sub-Step 2b- Optio	n I Apply Simple	Cost Analysis		
	The Costs Asso	ciated with the Proje	ct activity	This indicates that
	The project with corex production	t has many uncertain process of JSW. Th at JSW can/will cau	nty factors associated ne fluctuations in gas use disturbance in the	CDM project activity generates no financial or economic benefits

page 13

	 production of the electricity there by resulting in temporary loss of power production. In the worst case, a unit trip causes major loss of electric output. Realising the necessity of steady supply of the waste gases JTPCL proceeded for the project activity and a gas holder (buffer tank) was installed. The investment required was to the tune of INR 240 Million. JTPCL had discussed this matter with the fuel supplier (JSW) and reached an understanding with JSW, that JSW would make the requisite investment in the gas holder initially. JTPCL would then reimburse the amount to JSW at a future date after assessing the satisfactory performance of the gas holder with regards to uninterrupted and steady supply of gas to JTPCL. JTPCL had taken the investment decision keeping in view the potential CDM revenue flows due to the project activity. Without the project activity: Coal as main fuel JTPCL has been operating the power plant with coal as the main fuel and obtained necessary permission for the same. Operation with coal minimises the risk of unavailability of the waste gases and helps in generating assured level of power and this does not require any additional investment. 	other than CDM related income. So the simple cost analysis is applied for the investment analysis. Application of simple cost analysis demonstrates that the project involves additional costs and does not provide any additional financial or economic benefits. The project activity has crossed step 2 of additionality demonstration, and hence this assessment has moved to the next step 3 investment analysis.
Step 3. Barrier ana	alysis-we are also using this step in addition to step 2 to fu	rther strengthen our
case for additional	Ity of the project.	Non:-t:
SUD-SIEP 3a. Idantify kami and	Barriers due to prevailing practice,	Non existing
identify Darriers	generation at this size of operation) is the first of its kind in	and requirement
tha	the world (only anecdotal avidence is available). In any	and requirement
ine implomentation of	are no project activity of this type is surrently operational	auunuonan personnel training
twng of the	in India	personnel
nronosed project	III IIIuia. Technology Barrier Skilled and/or property trained	protective and
activity.	workman to operate and maintain the gas helder and	other sofety
<i>ucuruy</i> .	maintaining the steady supply of the waste and	measures are
	operation of waste gas (COREX) based nower plant was	nrohibitive barriers
	not available because of unfamiliarity with the processes	which the project
L	interational occurse of annumentry with the processes	minen the project

page 14

	involved in the project activity. Also additional safety measures (in the form of personnel training and Personnel Protective Equipments) were required in the project activity in addition to that of the scenario of using coal.	had to overcome(in addition to being investment additional)
Sub-step 3 b. Show that the identified barriers would not prevent the implementation of at least one of the alternatives (except the proposed project activity):	project activity in addition to that of the scenario of using coal. additional) Alternative (b): Existing power generation using coal (the power produced is imported to KPTCL and JSW) and the waste gas would be flared off . There are no prevailing practice or technology barriers that exist for this alternative. Both Sub-steps 3a – 3b are satisfied, proceed to Step 4	

Step 4: Common Practice			
	In India JTPCL is the first of its kind which is generating	Steps 4 satisfied,	
	electricity from Corex gas . Therefore, the Project case is	proceed to Step 5	
	an exceptional case and not a common practice.		

Step 5: Impact of CDM Registration			
	• the primary impact of CDM registration will be the sale of CERs, providing compensation towards the investment in the gas holder	Step 5 is satisfied	

Based on the above analysis, it is concluded that in the absence of regulations requiring utilization of corex gas and other waste gas for power generation in India, the same amount of electricity could be generated using coal as fuel. This would result in increasing emission of GHGs into the atmosphere. Without the CDM revenue the proponent had no direct economic incentive to incur the costs towards the gas holder.

The project is expected to reduce about 13,165,341 t CO2equ over the entire crediting period of 10 years.

B.4. Description of how the definition of the <u>project boundary</u> related to the <u>baseline</u> <u>methodology</u> selected is applied to the <u>project activity</u>:

The **spatial extent** of the project boundary comprises the waste gases source of delivery, power generating equipment, DG set as a standby for emergency purpose and the power plants connected physically to the electricity grid KPTCL and JSW. Hence, project boundary is considered within these terminal points where the project proponent has full control. For the purpose of calculation of project emissions, imported coal consumption has been included in the system boundary. Usage of any supplementary fuel by project has been included in the project boundary. A schematic of the project boundary is reproduced below:

page 15

B.5. Details of <u>baseline</u> information, including the date of completion of the baseline study and the name of person (s)/entity (ies) determining the <u>baseline</u>:

The current final PDD with baseline study was completed on 16 September 2005.

Dr Ram Babu, PricewaterhouseCoopers (P) Limited, whose contact information is set out at Annex 1, has assisted the Sponsor in determining the baseline methodology.

SECTION C. Duration of the project activity / Crediting period

C.1 Duration of the <u>project activity</u>:

C.1.1. <u>Starting date of the project activity:</u>

>> The starting date of a CDM project activity is the date on which the implementation or construction or real action of a project activity begins.

24th July 2001 is the starting date of the Project Activity.

page 16

C.1.2. Expected operational lifetime of the project activity:

>> Please state the expected operational lifetime of the project activity in years and months. The Project is expected to be operational for a period of 25 years from the date of commencement of operations.

C.2 Choice of the <u>crediting period</u> and related information:

Please state whether the project activity will use a renewable or a fixed crediting period and complete C.2.1 or C.2.2 accordingly.

Fixed crediting period

C.2.1.	Renewable crediting period

	C.2.1.1.	Starting date of the first <u>crediting period</u> :
>>NA		
	C.2.1.2.	Length of the first <u>crediting period</u> :

>>NA

C.2.2. Fixed crediting period:

	C.2.2.1.	Starting date:	
>>01 August	2001		
	C.2.2.2.	Length:	
>>10 scalars			

>>10 years

SECTION D. Application of a <u>monitoring methodology</u> and plan

D.1. Name and reference of <u>approved monitoring methodology</u> applied to the <u>project activity</u>:

Title: "Consolidated monitoring methodology for waste gas and/or heat for power generation"Reference: Approved consolidated monitoring methodology ACM0004 / Version 01, SectoralScope: 01, 8 July 2005

D.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity</u>:

The applicability conditions for the monitoring methodology are identical to that of the baseline methodology. Please refer to section B.1.1 for a detailed discussion.

Project activity includes electricity generation by utilizing imported coal and waste gas. The electricity generated is supplied to KPTCL and JSW. The project activity emission is calculated by considering the consumption of coal, LDO and HFO. The project activity's baseline emissions and the emission reduction units are based on the net units generated by the project activity for supply to KPTCL and JSW as measured by power meters at plant.

According to the ACM0004 the applicability criteria are the same as for the Baseline Methodology.

page 17

CDM – Executive Board

D.2.	1. Option 1: M	onitoring	of the emi	ssions in the	project scena	ario and	the <u>baseline</u> s	<u>cenario</u>	
All the data	(of plant and ol	perational	parameters	s) monitorin	ıg, recording,	checking	y, reviewing an	nd archiving is as	per ISO 9000/14000 practices unless
otherwise sp	ecifically mentio	ned.							
	D.2.1.1. Dat	a to be col	llected in (order to mon	uitor emission	s from t	he <u>project act</u>	<u>ivity</u> , and how this	s data will be archived:
ID number (Please use numbers to ease cross- referencing to D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c) or estimated (e)	Recording frequency	Prop ortio n of data to be moni tored	How will the data be archived? (electronic/ paper)	For how long archived data to be kept?	Comment
l. Qı	Quantity of coal used by project activity	Power Plant records	tonnes	E	Measured continuousl y and recorded monthly	100 %	Paper	Credit periods +2 years	To be measured and used for estimation of project emissions.
2. NCV1	Net calorific Value of coal	Power Plant records	TJ/tonn e	c	Monthly	Rand om	Paper	Credit periods +2 years	From measurements of Gross Ca;orifice value and ultimate analysis the Net calorific value is calculated each month
3. EF ₁	Carbon emission factor for coal	IPCC	tC/TJ	IPCC defaults	Monthly	Rand om	Paper	Credit periods +2 years	In the absence of India specific values, IPCC recommended values has been used.
4. Q ₂	Quantity of LDO used by project activity	Power Plant records	tonnes	ш	Monthly	100 %	Paper	Credit periods +2 years	From the difference of levels (beginning and end of the meonth) in the storage tank. This parameter is not very significant in project
This template	shall not be altered	d. It shall be	completed	without modify	/ing/adding hea	dings or l	ogo, format or fo	nt.	

page 18

ID number Data variable losures Source bata muit Massured (modelling) Prop How will For how long Comment <i>Please use cross-sear constantes to calculated attration of anter constantes to calculated attration (m), in a calculated attration of anter constanted (e) or archived (attration) Measured (e) consisting (e) Prop How will For how long Comment <i>Please tross-constantes to calculated attration (m), or archived (attration of anter constanted (e) or archived (attration of project emissions. Monthly Rand Paper Activity (e) (e) (e) (e) (e) (e) (e) (e) (e) (e)</i></i>		D.2.1.1. Dat	a to be co	llected in (order to mon	iitor emission	s from 1	the <u>project act</u>	<u>ivity</u> , and how this	data will be archived:
mumbers to arge cross- referencing to D.3) not arge cross- referencing to D.3) not arge cross- referencing to D.3) not error and cleating to b.3) not cleating to D.3)	ID number (Please use	Data variable	Source of data	Data unit	Measured (m),	Recording frequency	Prop ortio	How will the data be	For how long archived data to	Comment
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	numbers to				(c) or		n of data	archived?	be kept?	
io D.3) (e) moni tored monetored monetored <th< td=""><td>referencing</td><td></td><td></td><td></td><td>estimated</td><td></td><td>to be</td><td>paper)</td><td></td><td></td></th<>	referencing				estimated		to be	paper)		
5. NCV2Net calorificPowerT1/tonnmtoredtoredemission calculations5. NCV2Net calorificPowerT1/tonnmMonthlyRandPaperCreditemission calculations6. EF2ValueofPamteemissionsemissions6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Creditperiodsfor be measured and used6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Creditperiodsfor be measured and used6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Creditperiodsfor be measured and used7. Q3Quantity ofPowertomesmContinuous100Electronic/Creditperiodsfor be measured and used7. Q3Quantity ofPowertomesmContinuous100Electronic/Creditperiodsfor8. NCV3 <td>to D.3)</td> <td></td> <td></td> <td></td> <td>(e)</td> <td></td> <td>moni</td> <td></td> <td></td> <td></td>	to D.3)				(e)		moni			
5. NCV2Net calorificpowerT1/nommMonthlyRandPapercreditperiodsemission calculations5. NCV2Net calorificPowerT1/nommMonthlyRandPaperCreditperiodsTo be measured and usedUDOrecordsPlantemMonthlyRandElectronic/Creditperiodsenissions.6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Creditperiodsenissions.6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Creditperiodsenissions.6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Creditperiodsful aspect7. Q3Quantity ofPowertonesnmcontinuous100Electronic/Creditperiodsful aspect7. Q3Quantity ofPowertonesnmcontinuous100Electronic/Creditperiodsful aspect7. Q3Quantity ofPowertonenmpaper+2 yearspainternisions.fue diations.7. Q3Quantity ofPowertrunmMonthlyRandElectronic/Creditperiodsfor be measured and used7. Q3Net calorificPowerT/honnmMonthlyRandElectronic/Creditperiodsfor be measured and used100Electronic <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>tored</td><td></td><td></td><td></td></t<>							tored			
5. NCV2Net calorificPowerTJ/tonmMonthlyRandPaperCreditperiodsTo be measured and used1.DOrecordsePlantemMonthlyRandElectronic/ $+2$ yearsestimation of project emissions.6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/ $+2$ yearsestimation of project emissions.6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/ $+2$ yearsestimation of project emissions.6. EF2CarbonIPCCtC/TJIPCCMonthlyRandElectronic/ $+2$ yearsvalues, IPCC recommended valuation of project emissions.6. EF2Quantity ofPowertowntownRandElectronic/ $+2$ yearsreduction of project emissions.7. Q3Quantity ofPowerpowertownNoRandElectronic/Creditperiodsfor be measured and used7. Q3Quantity ofPowerPowerNoNoPower $+2$ yearsTo be measured and used7. Q3Quantity ofPowerPowerNoNoPower $+2$ yearsTo be measured and used7. Q3Quantity ofPowerPowerNoNoPower $+2$ yearsPowerPower1. DoPowerPowerNoNoPowerPowerPowerPowerPower1. POPowerPowerPowerMonthlyRand<										emission calculations
	$5. NCV_2$	Net calorific	Power	TJ/tonn	ш	Monthly	Rand	Paper	Credit periods	To be measured and used for
LDO records LDO records LDO records the absence of India speci 6. EF ₂ Carbon IPCC tC/TJ IPCC Monthly Rand Electronic/ Credit periods In the absence of India speci factor for emission +2 years values, IPCC recommended values 7. Q ₃ Quantity of Power tomes m Continuous 100 Electronic/ Credit periods In the absence of India speci 7. Q ₃ Quantity of Power tomes m Continuous 100 Electronic/ Credit periods In the absence of India speci 7. Q ₃ Quantity of Power tomes m Continuous 100 Electronic/ Credit periods for temissions T 7. Q ₃ Quantity of Power tomes m Continuous 100 Electronic/ Credit periods for temissions for temissions 8. NCV ₃ Net calorific Power Monthly Rand Electronic/ Credit periods for </td <td></td> <td>Value of</td> <td>Plant</td> <td>e</td> <td></td> <td></td> <td>om</td> <td></td> <td>+2 years</td> <td>estimation of project emissions.</td>		Value of	Plant	e			om		+2 years	estimation of project emissions.
6. EF ₂ Carbon IPCC tC/TJ IPCC Monthly Rand Electronic/ Credit periods In the absence of India speci factor for defaults om paper +2 years values, IPCC recommended valuations 7. Q ₃ Quantity of Power tonnes m Continuous 100 Electronic/ Credit periods To be measured and used 7. Q ₃ Quantity of Power tonnes m Continuous 100 Electronic/ Credit periods To be measured and used 1. O Not calorific Power tonnes m Continuous 100 Electronic/ Credit periods To be measured and used activity records Power TJ/tonn m Monthly Rand Electronic/ Credit periods To be measured and used 8. NCV ₃ Net calorific Power TJ/tonn m Monthly Rand Electronic/ Credit periods To be measured and used 9. EF ₃ Net calorific Power TJ/tonn Monthly <td></td> <td>LD0</td> <td>records</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		LD0	records							
T. Q3emission factorendefaultsompaper+2 yearsvalues, IPCC recommended values7. Q3Uantity of LDOPowertonnesmContinuous100Electronic/Creditbeen used.7. Q3Quantity of HFO used byPowertonnesmContinuous100Electronic/CreditperiodsTo be7. Q3Quantity of ProjectPowertonnesmContinuous100Electronic/CreditperiodsTo be8. NCV3Net calorific PowerPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo bemession calculations.8. NCV3Net calorific PowerPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo bemession calculations.9. EF3CarbonIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India spec9. EF3emissioninctorfactorfactorcontinuotsto bepaster of the absence of India spec9. EF3emissioninctorfactorfactorfactorfactorfactorfactorfactor14F0emissioninctorfactorfactorfactorfactorfactorfactorfactor14F0emissionfactorfactorfactorfactorfactorfactorfactor14F0emissionfactorfactorfactor <t< td=""><td>6. EF_2</td><td>Carbon</td><td>IPCC</td><td>tC/TJ</td><td>IPCC</td><td>Monthly</td><td>Rand</td><td>Electronic/</td><td>Credit periods</td><td>In the absence of India specific</td></t<>	6. EF_2	Carbon	IPCC	tC/TJ	IPCC	Monthly	Rand	Electronic/	Credit periods	In the absence of India specific
factorforforhas been used.7. Q3Quantity ofPowernonesmContinuous100Electronic/CreditperiodsTo be measured and used1. Q3Quantity ofPowertonnesmContinuous100Electronic/CreditperiodsTo be measured and used1. Q3Quantity ofPowertonnesmContinuous100Electronic/Creditperiodsestimation of project emissions. T8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used9. EF3CarbonIPCCtcC/TJIPCCMonthlyRandElectronic/Creditperiodsfor beinesions.9. EF3CarbonIPCCtonthlyRandElectronic/Creditperiodsfor beinesions.9. EF3CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Creditperiodsfor beines, IPCC9. EF3CarbonIPCCtC/TJIPCCMonthlyRandfectronic/for beines, IPCCfor beines, IPCC9. EF3emissiontarbostarbostarbostarbostarbosfor beines, IPCCfor beines, IPCC1. HFOtarbostarbostarbostarbostarbostarbos		emission			defaults		om	paper	+2 years	values, IPCC recommended values
LDOLDOLDOLDOLDOElectronic/CreditperiodsTo be measured and used estimation of project emissions. T7. Q3Quantity ofPowertonnesmContinuous100Electronic/CreditperiodsTo be measured and used paper7. Q3HFO used byPlantnVolpaper+2 yearsestimation of project emissions. TprojectrecordseNCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used9. EF3CarbonIPCtC/TJIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India spec9. EF3CarbonIPCtC/TJIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India spec9. EF3CarbonIPCtC/TJIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India spec9. EF3CarbonPomPaper+2 yearsvalues, IPCCrecommended valuesPaper100Elector forPomPaper+2 yearsvalues, IPCCrecommended values<		factor for								has been used.
7. Q3 Quantity of Power tornes m Continuous 100 Electronic/ Credit Periods To be measured and used HFO used by Plant Pant ly % paper +2 years estimation of project emissions. T project records econds not very significant parameter is not very significant Not calorific Power TJ/tonn m Monthly Rand Electronic/ Credit periods To be measured and used 8. NCV3 Net calorific Power TJ/tonn m Monthly Rand Electronic/ Credit periods To be measured and used 8. NCV3 Net calorific Power TJ/tonn m Monthly Rand Electronic/ Credit periods To be measured and used 9. EF3 Net calorific Power IPCC Monthly Rand Electronic/ Credit periods To be measured and used 9. EF3 Carbon IPCC IPCC Monthly Rand Electronic/ Credit periods In the absence of India spec 9. EF3 Carb		LDO								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7. Q ₃	Quantity of	Power	tonnes	ш	Continuous	100	Electronic/	Credit periods	To be measured and used for
projectrecordsrecordsrecordsproject emission calculations.8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used9. EF3CarbonIPCCtC/TJIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India speci9. EF3CarbonIPCCtC/TJIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India speci6. Ef3CarbonIPCCtC/TJIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India speci6. Ef3CarbonIPCCtOtopaper+2 yearsvalues, IPCC recommended valuedfactorforFPOFPOFPOFPOFPOFPOFPOFPOHFOFPOFPOFPOFPOFPOFPOFPOFPO10. HFOFPOFPOFPOFPOFPOFPOFPO11. FPOFPOFPOFPOFPOFPOFPO12. HFOFPOFPOFPOFPOFPOFPO13. HFOFPOFPO </td <td></td> <td>HFO used by</td> <td>Plant</td> <td></td> <td></td> <td>ly</td> <td>%</td> <td>paper</td> <td>+2 years</td> <td>estimation of project emissions. This</td>		HFO used by	Plant			ly	%	paper	+2 years	estimation of project emissions. This
activityactivitymmmonthlyRandElectronic/Descent anssion calculations.8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used8. NCV3Net calorificPowerTJ/tonnmMonthlyRandElectronic/CreditperiodsTo be measured and used9. EF3CarbonIPCCtC/TJIPCCMonthlyRandElectronic/CreditperiodsIn the absence of India speci9. EF3CarbonIPCCtC/TJIPCCMonthlyRandElectronic/India speci9. EF3CarbonIPCCtC/TJIPCCMonthlyRandElectronic/Hassence of India speci9. EF3Faiteteoristicteoristicteoristicteoristicteoristicteoristic10. HFOFaiteteoristic <td></td> <td>project</td> <td>records</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>parameter is not very significant in</td>		project	records							parameter is not very significant in
8. NCV ₃ Net calorific Power TJ/tonn m Monthly Rand Electronic/ Credit periods To be measured and used Value of Plant e +2 years estimation of project emissions. HFO records e estimation of project emissions. 9. EF ₃ Carbon IPCC tC/TJ IPCC Monthly Rand Electronic/ Credit periods In the absence of India specification for the table of t		activity								project emission calculations.
Value of Plant e om paper +2 years estimation of project emissions. HFO records records e om paper +2 years estimation of project emissions. 9. EF ₃ Carbon IPCC tC/TJ IPCC Monthly Rand Electronic/ Credit periods In the absence of India speci emission emission emission +2 years values, IPCC recommended val HFO HFO HFO emission emission emission	8. NCV ₃	Net calorific	Power	TJ/tonn	ш	Monthly	Rand	Electronic/	Credit periods	To be measured and used for
HFO records records low low low 9. EF ₃ Carbon IPCC tC/TJ IPCC Monthly Rand Electronic/ Credit periods In the absence of India speci 9. EF ₃ Carbon IPCC tC/TJ IPCC Monthly Rand Electronic/ Credit periods In the absence of India speci feator for to paper +2 years values, IPCC recommended value factor for to paper +2 years has been used.		Value of	Plant	e			om	paper	+2 years	estimation of project emissions.
9. EF ₃ Carbon IPCC tC/TJ IPCC Monthly Rand Electronic/ Credit periods In the absence of India speci emission emission factor for om paper +2 years values, IPCC recommended valued factor for factor for paper +2 years has been used.		HFO	records							
emission defaults om paper +2 years values, IPCC recommended values, IPCC recommend values, IPCC recommended values, IPCC recommended value	9. EF ₃	Carbon	IPCC	tC/TJ	IPCC	Monthly	Rand	Electronic/	Credit periods	In the absence of India specific
factor for has been used.		emission			defaults		om	paper	+2 years	values, IPCC recommended values
		factor for HFO								has been used.

page 19

D.2.1.2. Description of formulae used to estimate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂

equ.)

Coal, LDO & HFO is used in the project activity. The total project emission for a given year is equal to the quantity of fuel used in a year multiplied by NCV Project emissions are given as: PE $y = \sum Qi \times NCVi \times EFi \times 44/12 \times 0XIDi$ which is again multiplied by Emission factor, oxidation factor and 44/12.

Where:

PEy =Project emissions in year y (tCO2)

=Mass or volume unit of fuel i consumed (t or m³)(Source:Plant record) ō

NCVi =Net calorific value per mass or volume unit of fuel i (TJ/t or m³) (Source: Plant record and Central Electricity Authority (CEA))

=Carbon emissions factor per unit of energy of the fuel i (tC/TJ); Source: Default values from 1996 revised IPCC Guidelines) OXIDi =Oxidation factor of the fuel i (%); (Source:IPCC default value) EFi

I=1.2.3

2 for LDO for coal

3 for HFO

page 20

											-								
vithin the project	Comment		Meters at plant	and DCS will	measure the data.	Manager in-	charge will be	responsible for	regular	calibration of	meter.	Same as above.			Calculated from	the above	measured	parameters.	
irces of GHGs v	For how long archived data	to be kept?	Credit period	+2 years							Current tites	Create period	+2 years		Credit period	+2 years			
emissions by sou	How will the data be	archived? (electronic/ paper)	Electronic								Floatsonia	Electronic			Electronic				
anthropogenic	Proportion of data to	be monitored	100%								1000/	100%0			100%				
he <u>baseline</u> of :	Recording frequency		Continuousl	У							[]	Continuousi	y		Continuousl	y			
determining tl chived :	Measured (m),	calculated (c), estimated (e),	Online	measurement							0.1:0.2	Online	measurement		Online	measurement			
cessary for cted and arc	Data unit		MWh/yr								N 11171- /	INI W II/ YF			MWh/yr				
⁄ant data ne will be colle	Source of data		Power	Plant	records							rower	Plant	records	Power	Plant	records		
D.2.1.3. Relev I how such data	Data variable		Total	Electricity	Generated						A	Auxiliary	Electricity		Net	Electricity	supplied to	JSW and	KPTCL
boundary and	ID number (Please use	numbers to ease cross- referencing to table D.3)	10. EG _{GEN}								(- -	11. EUAUX			12.	EG _{yKPTCL,,JSW}			

357

page 21

boundary and	D.2.1.3. Rele d how such data	vant data ne will be colled	cessary for cted and arc	determining th hived :	he <u>baseline</u> of a	ınthropogenic	emissions by sour	rces of GHGs w	ithin the project	
ID number (Please use numbers to ease cross- referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	For how long archived data to be kept?	Comment	
13. EGy,kptcl.	Net Electricity supplied to KPTCL	Power Plant records	MWh/yr	Online measurement	Continuousl y	100%	Electronic	Credit period +2 years	Meters at plant and DCS will measure the data. Manager in- charge will be responsible for regular calibration of meter.	
14. EG _{y,JSW}	Net Electricity supplied to JSW	Power Plant records	MWh/yr	Online measurement	Continuousl y	100%	Electronic	Credit period +2 years	Meters at plant and DCS will measure the data. Manager in- charge will be responsible for regular calibration of meter.	
15. EF _{CO2,i} ,	Emission factor	IPCC	tC/TJ	IPCC defaults	Yearly	100%	Electronic/pape r	Credit period +2 vears		1

page 22

boundary and	D.2.1.3. Rele d how such data	vant data ne will be colle	ccessary for cted and arc	determining tl hived :	ue <u>baseline</u> of a	nthropogenic	emissions by sou	rces of GHGs w	ithin the project	
ID number	Data variable	Source of	Data unit	Measured	Recording	Proportion	How will the	For how long	Comment	
(Please use		data		(m),	frequency	of data to	data be	archived data		
numbers to				calculated		be	archived?	to be kept?		
ease cross-				(c),		monitored	(electronic/			
referencing				estimated			paper)			
to table $D.3$)				(e),						
16. Eff captive	Efficiency of	JTPCL	%	Measured	Yearly	100%	Electronic	Credit period		
_	the captive							+2 years		
_	nower nlant									

D.2.1.4. Description of formulae used to estimate baseline emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

>> Step 4: Determining the baseline emissions: (EFy)

As per the Alternative (b): Existing power generation using coal (the power produced is exported to KPTCL and JSW) and the waste gas would be flared off is the baseline scenario. The electricity generated is sold to JSW and then to KPTCL. So considering the same kind of situation the existing power generation emission is calculated as similar to the option 1 of ACM 0004. For determination of baseline emissions, project participants have included the following emission sources: CO2 emissions from coal consumption.

Baseline emissions are given as : BE_y = EGy.E_y EGy : net quantity of electricity supplied to the manufacturing facility by the project during the year y in MWH, and EFy: CO₂ baseline emission factor for the electricity displaced due to project activity during the year y

EFy =

EF_{CO2,i},i×3.6 TJ×44

Eff $_{captive} \times 1000 MWh \times 12$

This template shall not

ding headings or logo, format or font.

page 23

EF _y EF _{co2,i} values)	Emission factor for the power generation unit CO ₂ emissions factor of fuel used in power generation (tC/TJ) (Sources:IPCC Default facto, 1996 Revised IPCC Guidelines for default
Eff _{captive}	Efficiency of the power generation (%) (Source:Plant)
44/12	Carbon to Carbon Dioxide conversion factor
3.6/1000	TJ to MWh conversion factor

D. 2.2. Option 2: Direct monitoring of emission reductions from the project activity (values should be consistent with those in section E).

Not applicable

nd how this data will be archived:	Comment	
<u>project activity</u> , a	How will the data be archived? (electronic/ paper)	
ons from the	Proportio n of data to be monitored	
nitor emissio	Recordin g frequency	
in order to mo	Measured (m), calculated (c), estimated (e),	
collected ir	Data unit	
l. Data to be c	Source of data	
D.2.2.1	Data variabl e	
	ID number (Please use numbers to ease cross- referencin g to table D.3)	

page 24

D.2.2.2. Description of formulae used to calculate project emissions (for each gas, source, formulae/algorithm, emissions units of

CO2 equ.):

Not applicable.

D.2.	3. I reatm	ent of <u>leakag</u>	e in the n	nonitoring plan				
	D.2.3.1.	. If applical	ble, pleas	se describe the c	lata and inf	formation th	at will be collec	ted in order to monitor <u>leakage</u> effects of the
<u>project acti</u>	<u>vity</u>							
ID number	Data	Source of	Data	Measured	Recordin	Proportio	How will the	Comment
(Please use	variable	data	unit	(m),	ac	n of data	data be	
numbers to				calculated (c)	frequency	to be	archived?	
ease cross-				or estimated		monitored	(electronic/	
referencin				(e)			paper)	
g to table								
D.3)							_	

No leakage as per the methodology

D.2.3.2. Description of formulae used to estimate leakage (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

>>NA

D.2.4. Description of formulae used to estimate emission reductions for the project activity (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

>> The emission reduction (**ER**_y) by the project activity during a given year y is the difference between the baseline emissions for electricity generation with coal (\mathbf{BE}_y) and project emissions (\mathbf{PE}_y) , as follows:

 $\mathbf{E}\mathbf{R}_{y} = \mathbf{B}\mathbf{E}_{y} - \mathbf{P}\mathbf{E}_{y}.....(6)$

page 25

D.3. Quality contr	ol (QC) and quality assurance (QA) proc	edures are being undertaken f	or data monitored
Data (Indicate table and ID number e.g. 31.; 3.2.)	Uncertainty level of data (High/Medium/Low)	Are QA/QC procedures planned for these data?	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.
1, 2, 3,4,5,6,7,8,9	Low	Yes	This data will be required for the calculation of project emissions.
10,11,12,13,14	Low	Yes	This data will be used for the calculation of project electricity generation.
15,16	Low	Yes	The data will be directly used to calculate baseline emissions.

Please describe the operational and management structure that the project operator will implement in order to monitor emission reductions and any leakage effects, generated by the project activity **D.4**

management plan prepared for the site. The site also has an ISO 14001 based Environmental Management System (EMS) in place. Accordingly, the monitoring plan used herein has become an integral part of the Environmental Management Programmes and would be constituent of operational and >> The project is operated and managed by JTPCL who is the project proponent. JTPCL has ensured safety in operation of the plant as per environmental management structure of this EMS.

CEO has constituted the CDM project team, which is responsible for the project activity. The monitoring and verification of the project activity is assigned to the four member team which is responsible for monitoring, verification and recording of the data. On a daily basis the monitoring reports is checked by the operation head. In case of any irregularity in the project activity it is reported to the operation head. On a monthly basis this report is forwarded to the CEO.

D.5 Name of person/entity determining the <u>monitoring methodology</u>:

>> PricewaterhouseCoopers (P) Limited, whose contact information is set out at Annex 1, has assisted the Sponsor in determining the monitoring methodology.

page 26

page 27

SECTION E. Estimation of GHG emissions by sources

E.1. Estimate of GHG emissions by sources:

Coal as main fuel, HFO & LDO is used as supplementary fuels as a start up fuel or for flame stabilization. The total project emission for a given year is equal to the quantity of auxiliary fuel used in a year for startup or additional heat gain multiplied by NCV which is again multiplied by Emission factor, oxidation factor and 44/12.

Project emissions are given as: PE y = $\sum Qi \times NCVi \times EFi \times 44/12 \times OXIDi$ Where:

PEy =Project emissions in year y (tCO2)

Qi =Mass or volume unit of fuel i consumed (t or m^3)

NCVi =Net calorific value per mass or volume unit of fuel i (TJ/t or m³)

EFi =Carbon emissions factor per unit of energy of the fuel i (tC/TJ); (IPCC default values)

OXIDi =Oxidation factor of the fuel i (%); (IPCC default values)

				Total
				emissions
	Coal	LDO	HFO	PEy
	tCO2	t CO2	t CO2	T CO2
2001	292195.11	191.4	1 1887.19	294273.71
2002	645392.73	93.3	3 2411.87	647897.94
2003	578554.37	158.3	533.87	579246.55
2004	678086.21	134.2	6 843.33	679063.79
2005	626922.41	164.94	4 1621.79	628709.14
2006	626922.41	164.94	4 1621.79	628709.14
2007	626922.41	164.94	4 1621.79	628709.14
2008	626922.41	164.94	4 1621.79	628709.14
2009	626922.41	164.94	4 1621.79	628709.14
2010	626922.41	164.94	4 1621.79	628709.14
2011	313461.20	82.4	7 810.89	314354.57

E.2. Estimated <u>leakage</u>:

>>No Leakage

E.3. The sum of E.1 and E.2 representing the <u>project activity</u> emissions:

>> It is same as E1.

E.4. Estimated anthropogenic emissions by sources of greenhouse gases of the <u>baseline:</u>

Therefore, the total anthropogenic emissions in the baseline during 2001 - 2011 will be 19452432.7 tCO₂.

Baseline	emission calc	ulation	
			BEelectricity,
MU	MWH	EFPG	у

page 28

	E _{NET}	E _{NET}	tCO2/Mwh	tCO2
2001	1030.78	1030775.00	0.97	1002973.53
2002	2039.54	2039537.50	0.97	1984528.26
2003	2044.96	2044957.50	0.97	1989802.07
2004	1881.80	1881802.50	0.97	1831047.60
2005	1999.16	1999163.57	0.97	1945243.27
2006	1999.16	1999163.57	0.97	1945243.27
2007	1999.16	1999163.57	0.97	1945243.27
2008	1999.16	1999163.57	0.97	1945243.27
2009	1999.16	1999163.57	0.97	1945243.27
2010	1999.16	1999163.57	0.97	1945243.27
2011	999.58	999581.79	0.97	972621.64

where:

 $E_{\rm NET} = E_{\rm GEN} - E_{\rm AUX}$

 E_{NET} = Net Electricity generated by the project (MWh/yr)

 E_{GEN} = Total electricity generated of the project (MWh /yr)

 E_{AUX} = Auxiliary power consumption within the boundary (MWh /yr)

EF_y = Baseline emissions factor ((tCO2eq/ MWh)

E.5. Difference between E.4 and E.3 representing the emission reductions of the <u>project</u> <u>activity</u>:

>>Emission Reduction (ERy)(kg CO₂ eq/yr) = Baseline Emissions (BEy) – Project Emission (PEy).....(5)

	Baseline Emissions	Project Emissions	Emission Reduction
Year	BE _{electricity,y}	РЕу	ER _v
	tCO ₂	tCO ₂	tCO ₂
2001	1002973.53	294273.71	708699.82
2002	1984528.26	647897.94	1336630.32
2003	1989802.07	579246.55	1410555.53
2004	1831047.60	679063.79	1151983.81
2005	1945243.27	628709.14	1316534.13
2006	1945243.27	628709.14	1316534.13
2007	1945243.27	628709.14	1316534.13
2008	1945243.27	628709.14	1316534.13
2009	1945243.27	628709.14	1316534.13
2010	1945243.27	628709.14	1316534.13
2011	972621.64	314354.57	658267.07

Please refer to the Table below

Total Emission Reductions =13165341.35 t CO2

page 29

CDM – Executive Board

. .

• •

	Baseline Emissions	Project Emissions	Emission Reduction
Year	BE _{electricity,y}	РЕу	ER_v
	tCO ₂	tCO ₂	tCO ₂
20	01 1002973.5	3 294273.71	708699.82
20	02 1984528.2	6 647897.94	1336630.32
20	03 1989802.0	7 579246.55	1410555.53
20	04 1831047.6	0 679063.79	1151983.81
20	05 1945243.2	7 628709.14	. 1316534.13
20	06 1945243.2	7 628709.14	1316534.13
20	07 1945243.2	7 628709.14	1316534.13
20	08 1945243.2	7 628709.14	1316534.13
20	09 1945243.2	7 628709.14	1316534.13
20	10 1945243.2	7 628709.14	1316534.13
20	972621.6	4 314354.57	658267.07

Total Emission Reductions =13165341.35 t CO2

SECTION F. Environmental impacts

F.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

>> In case of Thermal Power Plants, by a notification of 10 April 1997, Ministry of Environment and Forest, Government of India has delegated power to the State Governments for environmental clearances for some specific categories of plants. One of the categories is Co-generation plant and the proposed power plant falls under that category. The environmental clearance for this project will be guided by the above-mentioned notification and accordingly an Environmental Impact assessment has been conducted. This project activity has received environmental clearance has been received and the environmental impacts are not significant.

The above study showed that overall environmental impacts are not significant. Economic and related benefits, if considered, will make the overall impact positive. A summary of impacts is presented below:

Land use

There has been no change in land use. The project activity is carried out inside the existing plant. Water quality

There will be no impact on water quality of local water source including the rivers.

Air quality

The dispersion computation shows that the increase in air pollutants will be negligible. No significant impact is envisaged.

Employment

Around 5 people are additionally employed after the project activity in the plant and 20 people were temporarily employed during construction.

The new plant will enhance the industrialization of Bellary district and also of the state. This will be helpful socio-economically for the local population as well as for the state.

page 30

F.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

>> This project activity has received environmental clearance and the environmental impacts are considered not significant both by the host party.

SECTION G. Stakeholders' comments

>>

G.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled:

>> The stakeholders for the project activity were identified at the outset by a team of JTPCL staff and the stakeholders were duly informed of the consultation meeting. In addition public notices were also issued for the local stakeholder consultation meeting. Local stakeholder consultation meeting to discuss stakeholder concerns on the proposed Clean Development Mechanism (CDM) project – waste gas use for electricity generation at JTPCL, was held at 11:00 a.m. on 7th April 2005 at the Business centre, JVSL township, Vidyanagar, Dist. Bellery, Karnataka, India.

The local stakeholders appreciated the CDM initiative and applauded the fact that it would be without additional resource use and also without emissions of harmful gases.

The stakeholders viewed JTPCL as a reputed company contributing to local environmental benefits and socio-economy through such initiatives. Overall there was unanimous agreement that the project activity was really a proactive initiative by the project party, which contributes, to the sustainable development.

>>	
Stakeholder concerns / question / comment	Answer / clarifications
Environment	
Are you storing Corex gases? Is there danger of explosion or any other incident?	Yes we are storing the corex gases. There is no danger of explosion of the Corex gases.
What is the present ambient air quality and what would be the result of the project activity on ambient air quality?	 The background ambient air quality of the area is as below. SPM - 132 μg/m3 SO2 - 7.03 μg/m3 NOx - 10.96 μg/m3 Since the project will generate power using more proportion of waste gases beyond the consent limit, there is no increase in the level of SPM & SO2.
What are the effects of increase	The national ambient air quality standard for industrial areas is 60

G.2. Summary of the comments received:

page 31

Stakeholder concerns /	Answer / clarifications
question / comment	
in ambient concentration of	ug/m3. The NOx ambient concentrations below this level do not
NOx?	cause any health or ecological impacts.
Why should you reduce GHG emissions while it is the commitment of developed nations?	All the nations ratifying Kyoto Protocol have recognized the need to reduce emissions of GHG's. Since Government of India has ratified the protocol, we have taken these initiatives which would also improve the local environment
Which division of the ministry in environment and forest handles climate change?	There is a climate change division in MoEF and Mr. R.K.Sethi, Director, heads this Division. You can know more details by logging on to <u>www.envfor.nic.in</u>
Does the project activity require additional water?	Water Requirement is same as before the project activity. Installation of the gas holder does not need any substantial increase in the water requirement.
Would you generate any more solid waste due to the project activity?	No solid waste will be generated because of the [project activity.
What care workers have to take for handling slag?	Workers would have to wear personal protective equipment and follow strictly the safety and occupational health instructions
Economic	
How much money have you invested in your gas holder?	INR 240.00 million
Social	
Would workers require any retraining to work on this activity?	A training session was conducted for the employee.

G.3. Report on how due account was taken of any comments received:

>> The stakeholders were provided clarifications on the issues raised as above to their satisfaction. None of the concerns expressed by the stakeholders required an action to be taken by the JTPCL during the project operation and at any other stage .

page 32

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	Jindal Thermal Power Company Ltd.
Street/P.O.Box:	5-A, G.Deshmukh Marg
Building:	Jindal Mansion
City:	Mumbai
State/Region:	Maharashtra
Postfix/ZIP:	
Country:	India
Telephone:	0091-22-23513000
FAX:	
E-Mail:	raaj.kumar@jtpcl.com
URL:	
Represented by:	
Title:	Joint Managing Director & CEO
Salutation:	Mr.
Last Name:	Kumar
Middle Name:	
First Name:	Raaj
Department:	
Mobile:	09821910516
Direct FAX:	
Direct tel:	00-91-2223512671
Personal E-Mail:	

page 33

UNFCC

INFORMATION REGARDING PUBLIC FUNDING

No official Development assignment is used in this project activity

Annex 3

Baseline emission calculation				
	MU	MWH	EFPG	BEelectricity,y
			tCO2/Mwh	tCO2
2001	1030.78	1030775.00	0.97	1002973.53
2002	2039.54	2039537.50	0.97	1984528.26
2003	2044.96	2044957.50	0.97	1989802.07
2004	1881.80	1881802.50	0.97	1831047.60
2005	1999.16	1999163.57	0.97	1945243.27
2006	1999.16	1999163.57	0.97	1945243.27
2007	1999.16	1999163.57	0.97	1945243.27
2008	1999.16	1999163.57	0.97	1945243.27
2009	1999.16	1999163.57	0.97	1945243.27
2010	1999.16	1999163.57	0.97	1945243.27
2011	999.58	999581.79	0.97	972621.64
		19991635.7		19452432.7

Annex 4

MONITORING PLAN As in section D